

Surface Mount Ceramic Capacitor Products

IMPORTANT INFORMATION/DISCLAIMER

All product specifications, statements, information and data (collectively, the "Information") in this datasheet or made available on the website are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KYOCERA AVX's knowledge of typical operating conditions for such applications, but are not intended to constitute and KYOCERA AVX specifically disclaims any warranty concerning suitability for a specific customer application or use.

ANY USE OF PRODUCT OUTSIDE OF SPECIFICATIONS OR ANY STORAGE OR INSTALLATION INCONSISTENT WITH PRODUCT GUIDANCE VOIDS ANY WARRANTY.

The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KYOCERA AVX with reference to the use of KYOCERA AVX's products is given without regard, and KYOCERA AVX assumes no obligation or liability for the advice given or results obtained.

Although KYOCERA AVX designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Unless specifically agreed to in writing, KYOCERA AVX has not tested or certified its products, services or deliverables for use in high risk applications including medical life support, medical device, direct physical patient contact, water treatment, nuclear facilities, weapon systems, mass and air transportation control, flammable environments, or any other potentially life critical uses. Customer understands and agrees that KYOCERA AVX makes no assurances that the products, services or deliverables are suitable for any highrisk uses. Under no circumstances does KYOCERA AVX warrant or guarantee suitability for any customer design or manufacturing process.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

Surface Mount Ceramic Capacitor Products

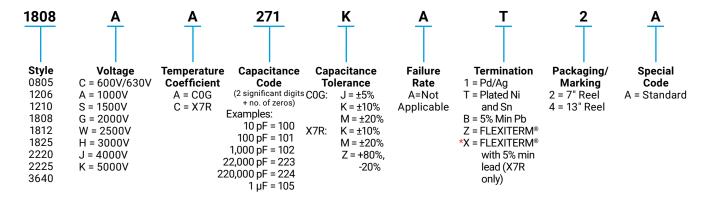
Table of Contents

How to (Order	Automotive MLCC	
	ber Explanation1	General Specifications	54
		Capacitance Range	
COG (NF	PO) Dielectric	•	
	pecifications3	APS for COTS+ High Reliability Applications	
Specificat	ions and Test Methods4	General Specifications	59
Capacitan	ce Range5	Capacitance Range	60
U Dielec	tric	MLCC with FLEXITERM®	
RF/Microv	vave COG (NP0) Capacitors (RoHS)	General Specifications	
	vave COG (NPO) Capacitors (Sn/Pb)	Specifications and Test Methods	64
	wave Automotive COG (NPO) Capacitors (RoHS)	Capacitance Range	66
	Kits	FLEXISAFE MLC Chips	
3		General Specifications and Capacitance Range	68
X8R/X8I	_ Dielectric		
General S	pecifications16	Capacitor Array	
Specificat	ions and Test Methods18	Capacitor Array (IPC)	69
		Automotive Capacitor Array (IPC)	
X7R Die	lectric lectric	Part & Pad Layout Dimensions	
General S	pecifications19	,	
Specificat	ions and Test Methods20	Low Inductance Capacitors	
Capacitan	ce Range	Introduction	75
		LICC® (Low Inductance Chip Capacitors) Capacitors)	77
X7S Die	ectric	LICC® (Low Inductance Chip Capacitors) Capacitors)	
General S	pecifications23	IDC (InterDigitated Capacitors)	
Specificat	ions and Test Methods24	LGA Low Inductance Capacitors	85
Capacitan	ce Range		
		High Temperature MLCCs	
X5R Die	ectric	AT Series - 200°C & 250°C Rated	88
	pecifications26		
•	ions and Test Methods27	High Voltage MLC Chips	
Capacitan	ce Range28	For 600V to 5000V Applications	94
		Tin/Lead Termination "B" - 600V to 5000V Applications	
Y5V Die		FLEXITERM® - 600V to 5000V Applications	
	pecifications30	For 600V to 3000V Automotive Applications - AEC-Q200	106
	ions and Test Methods31		
Capacitar	ce Range32	MIL-PRF-55681/Chips	
		CDR01 thru CDR06	
	old Termination — AU Series	CDR31 thru CDR35	110
	pecifications		
Capacitan	ce Range34	MLCC Medical Applications	
		MM Series	114
	in/Lead Termination "B" (LD Series)		
COG (NPO) – General Specifications	Packaging of Chip Components	119
	Capacitance Range		
X8R	General Specifications 44	Embossed Carrier Configuration	120
7.01.	Specifications and Test Methods45		
	Capacitance Range	Paper Carrier Configuration	121
X7R	General Specifications		
	Specifications and Test Methods48	Basic Capacitor Formulas	122
	Capacitance Range49		
X5R	General Specifications	General Description	123
	Specifications and Test Methods		
	Capacitance Range53		

How to Order

Commercial Surface Mount Chips EXAMPLE: 08055A101JAT2A

0805	5	Α	101	<u>J*</u>	Α	<u>T</u>	2	A**
	T	T		T	T	T	T	T
Size	Voltage	Dielectric	Capacitance	Tolerance	Failure	Terminations	Packaging	Special
(L" x W")	4 = 4V	A = NPO(COG)	2 Sig. Fig +	$B = \pm .10 pF$	Rate	T = Plated Ni and Sn	Available	Code
0101*	6 = 6.3V	C = X7R	No. of Zeros	$C = \pm .25 pF$	A = N/A	7 = Gold Plated	2 = 7" Reel	A = Std
0201	Z = 10V	D = X5R	Examples:	$D = \pm .50 pF$	4 = Automotive	U = Conductive	4 = 13" Reel	K = 30K (0603 2mm pitch)
0402	Y = 16V	F = X8R	100 = 10 pF	F = ±1% (≥ 10 pF)		Expoxy for Hybrid	U = 4mm TR	22K (0805/1206
0603	3 = 25V	G = Y5V	101 = 100 pF	G = ±2% (≥ 10 pF)		Applications	(01005)	<0.030"/ 0.76mm)
0805	D = 35V	U = U Series	102 = 1000 pF	J = ±5%		Z = FLEXITERM®		H = 18K (0603/0805/1206
1206 1210	5 = 50V	W = X6S	223 = 22000 pF	K = ±10%		*X = FLEXITERM® with 5% min lead	Contact	<0.037" / 0.94mm)
1812	1 = 100V	Z = X7S	224 = 220000 pF 105 = 1µF	M = ±20%		(X7R & X8R only)		J = 15K (0805/1206
1825	2 = 200V		106 = 10µF	Z = +80%, -20% P = +100%, -0%		(A/R & AGR OHly)	Factory For	<0.050" / 1.27mm) 1 = 12K (0805/1206
2220	7 = 500V		107 = 100uF	F = +100 %, -0 %			Multiples	<0.055 / 1.4mm)
2225			For values below					**Non std options upon
		Factory for	10 pF, use "R"					approval from the factory
	Special	Voltages	in place of					
*EIA 01005	F = 63V	9 = 300V	Decimal point, e.g.,			Contact		
	E = 150V	8 = 400V	9.1 pF = 9R1.			Factory For		
	V = 250V				1	= Pd/Ag Term		
						- Fu/Ay Tellii		


^{*} B, C & D tolerance for ≤10 pF values.

Standard Tape and Reel material (Paper/Embossed) depends upon chip size and thickness. See individual part tables for tape material type for each capacitance value.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. For Tin/Lead Terminations, please refer to LD Series

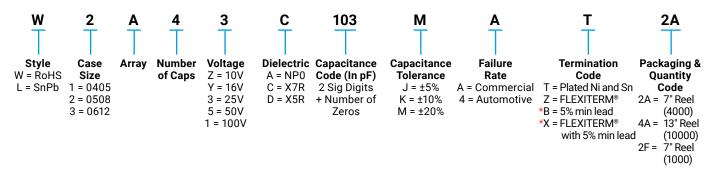
High Voltage MLC Chips

EXAMPLE: 1808AA271KAT2A

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. For Tin/Lead Terminations, please refer to LD Series

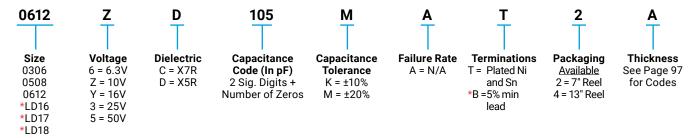
Not RoHS Compliant

For RoHS compliant products, please select correct termination style.


How to Order

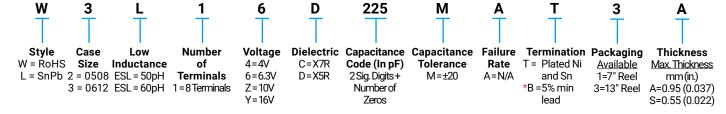
Part Number Explanation

Capacitor Array


EXAMPLE: W2A43C103MAT2A

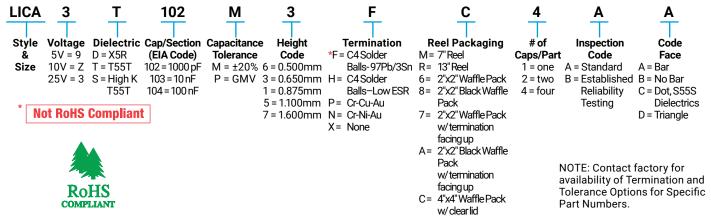
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

Low Inductance Capacitors (LICC®)


EXAMPLE: 0612ZD105MAT2A

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

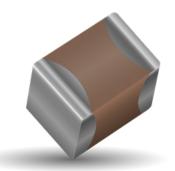
Interdigitated Capacitors (IDC)


EXAMPLE: W3L16D225MAT3A

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

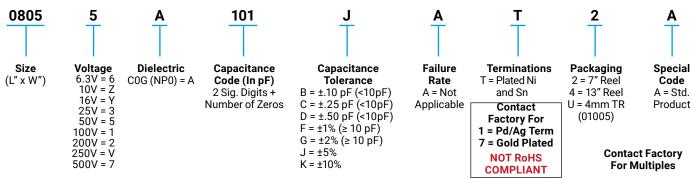
Low Inductance Decoupling Capacitor Arrays (LICA)

EXAMPLE: LICA3T183M3FC4AA

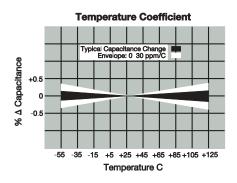


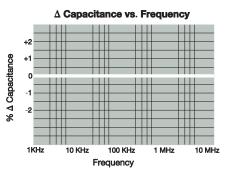
COG (NPO) Dielectric

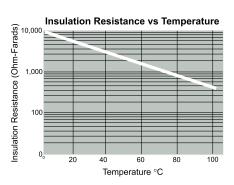
General Specifications

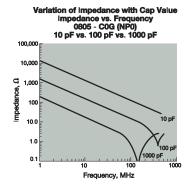


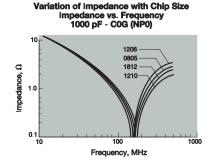
COG (NPO) is the most popular formulation of the "temperature-compensating," EIA Class I ceramic materials. Modern COG (NPO) formulations contain neodymium, samarium and other rare earth oxides.

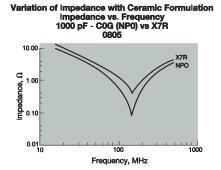

COG (NP0) ceramics offer one of the most stable capacitor dielectrics available. Capacitance change with temperature is 0 ±30ppm/°C which is less than ±0.3% C from -55°C to +125°C. Capacitance drift or hysteresis for COG (NPO) ceramics is negligible at less than ±0.05% versus up to ±2% for films. Typical capacitance change with life is less than ±0.1% for COG (NPO), one-fifth that shown by most other dielectrics. COG (NPO) formulations show no aging characteristics.


PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)






NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.



COG (NP0) Dielectric

Parame	ter/Test	NP0 Specification Limits	Measuring (Conditions				
	perature Range	-55°C to +125°C	Temperature Cy					
	citance Q	Within specified tolerance <30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	Freq.: 1.0 MHz ± 10% 1.0 kHz ± 10% for Voltage: 1.0	r cap > 1000 pF				
Insulation	Resistance	10,000MΩ or 500MΩ - μ F, whichever is less	Charge device with rated @ room tem					
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250% seconds, w/charge and d to 50 mA Note: Charge device with for 500V o	ischarge current limited (max) 150% of rated voltage				
	Appearance	No defects						
Resistance to	Capacitance Variation	±5% or ±.5 pF, whichever is greater	Deflection Test Time: 3	0 seconds				
Flexure	Q	Meets Initial Values (As Above)	V					
Stresses	Insulation Resistance	≥ Initial Value x 0.3	90 n	nm —				
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solder at 230 ± 5°C for 5.0 ± 0.5 seconds					
	Appearance	No defects, <25% leaching of either end terminal						
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Dip device in eutectic	solder at 260°C for				
Resistance to Solder Heat	Q	Meets Initial Values (As Above)	60sec- onds. Store at room temperature for 24 ± 2hours before measuring electric: properties.					
oolder Heat	Insulation Resistance	Meets Initial Values (As Above)						
	Dielectric Strength	Meets Initial Values (As Above)	Stop 1: .559C ± 20 20 ± 2 minutes					
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes				
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp	≤ 3 minutes				
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes				
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes				
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles at roor					
	Appearance	No visual defects	24 110013 01 1001	tomporature				
	Capacitance Variation	≤ ±3.0% or ± .3 pF, whichever is greater	Charge device with twice					
Load Life	Q (C=Nominal Cap)	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	chamber set at for 1000 hou Remove from test chai	rs (+48, -0).				
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	room temperatu before me	re for 24 hours				
	Dielectric Strength	Meets Initial Values (As Above)						
	Appearance	No visual defects						
	Capacitance Variation	≤ ±5.0% or ± .5 pF, whichever is greater	Store in a test chamber s	et at 85°C ± 2°C/ 85% ±				
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	5% relative humidit (+48, -0) with rated	voltage applied.				
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature for 24 ± 2 ho					
	Dielectric Strength	Meets Initial Values (As Above)						

COG (NP0) Dielectric

Capacitance Range

PREFERRED SIZES ARE SHADED

SIZE		0101*	020	01		0402				0603						0805						1206			
Solderin		Reflow Only	Reflow		Ref	flow/Wa	ave		Re	eflow/W	ave					low/Wave	e				F	eflow/W	ave		
Packagi	ing	All Paper	All Pa	aper	Α	All Pape	r			All Pap	er		Paper/Embossed						Pa	er/Emb	ossed				
(L) Length	mm (in.)	0.40 ± 0.02 (0.016 ± 0.0008)	0.60 ± (0.024 ±			00 ± 0.1 40 ± 0.0				.60 ± 0. 063 ± 0.						01 ± 0.20 79 ± 0.00	8)					3.20 ± 0. .126 ± 0.			
W) Width	mm	0.20 ± 0.02	0.30 ±		<u> </u>	50 ± 0.		0.81 ± 0.15			1.25 ± 0.20						1.60 ± 0.								
vv) vvidtii	(in.)	(0.008 ± 0.0008)	(0.011 ±			20 ± 0.0				032 ± 0.						19 ± 0.00				(0.063 ± 0.008)					
(t) Terminal	mm (in.)	0.10 ± 0.04 (0.004 ± 0.0016)	0.15 ± (0.006 ±			25 ± 0.1 10 ± 0.0).35 ± 0. 014 ± 0.						50 ± 0.25 20 ± 0.01						0.50 ± 0. .020 ± 0.			
	WVDC	16	25	50	16	25	50	16	25	50	100	200	16	25	50	100	200	250	16	25	50	100	200	250	500
Сар	0.5		Α	Α	С	С	С	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
(pF)	1.0 1.2	B B	A	A	C	C	C	G G	G	G G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	1.5	В	A	A	C	C	C	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	1.8	В	Α	Α	С	С	С	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	2.2 2.7	B B	A	A	C	C	C	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	3.3	В	A	A	С	С	C	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	3.9	В	A	A	С	С	С	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	4.7 5.6	B B	A	A	C	C	C	G	G	G	G	-	J	J	J	J	J	J	J	J	J	J	J	J	J
	6.8	В	A	A	C	c	c	G	G	G	G		Ĵ	Ĵ	Ĵ	Ĵ	J	Ĵ	J	J	J	J	Ĵ	Ĵ	Ĵ
	8.2	В	A	A	С	С	С	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	10 12	B B	A	A	C	C	C	G G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	15	В	Α	Α	С	С	С	G	G	G	G	G	Ĵ	J	Ĵ	J	Ĵ	J	Ĵ	J	J	J	Ĵ	J	J
	18	B B	A	A	С	С	С	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	22 27	В	A	A	C	C	C	G G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	33	В	Α	Α	С	С	С	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	39 47	B B	A	A	C	C	C	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	56	В	A	A	С	C	C	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	68	В	A	Α	С	С	С	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	100	B B	A	A	C	C	C	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	120	D			C	C	C	G	G	G	G	G	Ĵ	J	J	J	J	Ĵ	J	J	J	J	J	J	J
	150				С	С	С	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	180 220				C	C	C	G G	G	G	G G	G G	J	J	J	J	J N	N N	J	J	J	J	J	J	J
	270				С	С	С	G	G	G	G	_	Ĵ	Ĵ	Ĵ	Ĵ	N	N	Ĵ	Ĵ	J	J	J	J	J
	330 390				C	C	C	G G	G	G	G		J	J	J	J	N N	N N	J	J	J	J	J	J	J
	470				C	C	C	G	G	G	G		J	J	J	J	N	N	J	J	J	J	J	J	J
	560				С	С	С	G	G	G	G		J	J	J	J	N	N	J	J	J	J	J	J	J
	680 750				C	C	C	G	G	G	G		J	J	J	J	N N	N N	J	J	J	J	J	J	J
	820				C	C	C	G	G	G	G		J	J	Ĵ	J	N	N	J	Ĵ	Ĵ	J	J	J	J
	1000				С	С	С	G	G	G	G		J	J	J	J .	N	N	J	J	J	J	J	٠ -	J
	1200 1500							G G	G	G			J	J	J	J	P P	P P	J	J	J	J M	Q	J P	J P
	1800							G	G	G			J	J	J	J	P	Р	J	J	М	Р	Q	P	P
	2200							G	G	G G			P P	P P	P P	P P	P P	P P	J	J	M	P P	Q	P P	P P
	2700 3300							G	G	G			P	P	P	P	P	P	J	J	M	P	Q	X	P
	3900							G	G	G			Р	Р	Р	Р	Р	Р	J	J	М	Р	Х	x	х
	4700 5600							G	G	G			P P	P P	P P	P	Р	Р	J	J	M	P P	X	X	X
	6800												P	P	P				M	M	M	P	X	X	X
	8200												Р	Р	Р				P	Р	Р	P	Х	Х	
Cap (μF)	0.010 0.012												P P	P P	P P				P X	P X	P X	P X	X	Х	
(14)	0.015														Ľ				Х	Х	Х	Х			
	0.018	_1-		\leq	W-W	-													X	X	X	X			
	0.022 0.027	1	<			1													X	X	X	Х			
	0.033	()))													Х	Х	Х	Х			
	0.039	_	J	1			7												X	X	X				
	0.047		سما	*										-					X	X	X				
	0.082		Γt	1																					
WVDC	0.1	16	25	50	16	25	50	16	25	50	100	200	16	25	50	100	200	250	X 16	25	X 50	100	200	250	500
SIZE		0101*	020		10	0402	30	10		0603		200	10			0805	200	230	10		1 30	1206	200	230	300

Letter	Α	В	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.05 5)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
		PAPER								EMB	OSSED			

COG (NP0) Dielectric

Capacitance Range

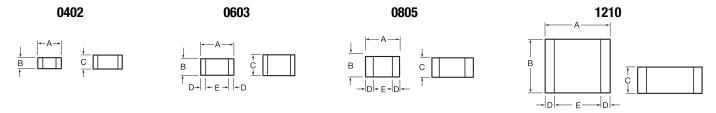
PREFERRED SIZES ARE SHADED

SIZE				1210					1812				1825			2220			2225	
Soldering	g			Reflow Only	/				Reflow Only	,			Reflow Onl	y		Reflow Onl	у	R	eflow Only	
Packagin	-			per/Embos					II Embosse				All Embosse			II Embosse			Embossed	
(L) Length	mm (in.)		(0	3.20 ± 0.20 0.126 ± 0.00	18)			(0	4.50 ± 0.30 .177 ± 0.01	2)	_		4.50 ± 0.30 0.177 ± 0.01	12)	(0	5.70 ± 0.40 .225 ± 0.01	16)	(0.:	5.72 ± 0.25 225 ± 0.010	0)
W) Width	mm (in.)			2.50 ± 0.20 0.098 ± 0.00					3.20 ± 0.20 .126 ± 0.00			((6.40 ± 0.40 0.252 ± 0.01			5.00 ± 0.40 .197 ± 0.01			5.35 ± 0.25 250 ± 0.010	
(t) Terminal	mm			0.50 ± 0.25					0.61 ± 0.36				0.61 ± 0.36			0.64 ± 0.39			0.64 ± 0.39	
(4)	(in.) WVDC	25	50	0.020 ± 0.01 100	200	500	25	50	.024 ± 0.01	4) 200	500	50	0.024 ± 0.01 100	200	50	.025 ± 0.01	200	50	025 ± 0.015 100	200
Сар	3.9	25	30	100	200	300	25	30	100	200	300	30	100	200	30	100	200	30	100	200
(pF)	4.7																			
	5.6																			
	6.8 8.2																			
	10	М	М	М	М	М	Р	Р	Р	Р	Р						_	4		\vdash
	12	М	M	M	M	М	P	P	P	P	P								N	
	15	М	М	М	М	М	Р	Р	Р	Р	Р					~	\leq		TT-	
	18	М	М	М	M	М	Р	Р	P	Р	P))		1	
	22 27	M M	M M	M M	M M	M M	P P	P P	P P	P P	P P						$\overline{}$			
	33	M	M	M	M	M	P	P	P	P	P				<u> </u>	†	*t	1	-	\vdash
	39	М	М	М	М	М	Р	Р	Р	Р	Р									
	47	Р	P	Р	Р	Р	Р	Р	P	Р	Р									
	56	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P									
	68 82	P	P	P	P	P	P	P	P	P	P									
	100	P	P	P	P	P	P	P	P	P	P									
	120	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р									
	150	P	P	P	P	P	P	P	Р	P	P									\vdash
	180 220	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P									
	270	P	P	P	P	P	P	P	P	P	P									
	330	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р									
	390	P	P	P	P	P	P	P	P	P	P									
	470 560	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P									\vdash
	680	P	P	P	P	P	P	P	P	P	P									
	820	Р	P	P	P	P	P	P	P	P	P									
	1000	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	М	М	М				М	М	Р
	1200	P	P	P	P	Р	Р	Р	P	Р	P	M	M	M				М	M	P
	1500 1800	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	M M	M M	M M				M M	M M	P P
	2200	P	P	P	P	P	P	P	P	P	P	X	X	M				M	M	P
	2700	Р	Р	Р	Р	Р	Р	Р	Р	Р	Q	Х	Х	М				М	М	Р
	3300	Р	Р	P	P	Р	P	P	P	P	Q	X	X	X			X	М	М	P
	3900 4700	P P	P P	P P	P P	P P	P P	P P	P P	P P	Q Y	X	X	X X	X	X	X	M M	M M	P P
	5600	P	P	P	P	P	P	P	P	P	Y	X	X	X	X	X	X	M	M	P
	6800	Р	Р	Р	x	Х	Р	Р	Q	Q	Y	x	x	x	X	x	x	М	М	Р
	8200	P	P	Р	Х	Х	P	Р	Q	Q	Y	X	X	X	Х	X	Х	М	М	Р
Cap	0.010 0.012	P X	P X	X X	X X	X	P P	P P	Q Q	Q X	Y	X X	X	X X	X	X X	X	M M	M M	P P
(μF)	0.012	X	×	x	z	Z	P	P	Q	X	Y	×	X	×	×	×	×	M	M	Y
	0.018	Х	Х	Z	Z		P	P	X	Х	Y	Х	Х	Х	Х	Х	Х	М	М	Y
	0.022	Х	X	Z	Z		Р	P	X	X		Х	Х	Х	Х	Х		M	Y	Υ
	0.027	X	Z	Z	Z		Q	X	X	Z	 	X	X	Y	X	X	\vdash	P	Y	Y
	0.033 0.039	X Z	Z Z	Z Z	Z		Q X	X X	X Z	Z Z		X X	Х		X Y	Х		X X	Y Y	Y
	0.039	Z	Z	Z			x	x	Z	Z		x			Y			X	Z	.
	0.068						Z	Z	Z						Z			Х	Z	
	0.082						Z	Z	Z						Z			X	Z	
	0.1 WVDC	25	50	100	200	500	Z 25	Z 50	Z 100	200	500	50	100	200	50	100	200	Z 50	Z 100	200
	SIZE	23		1210	200	300	23	30	1812	200	300	30	1825	200	30	2220	200	30	2225	200

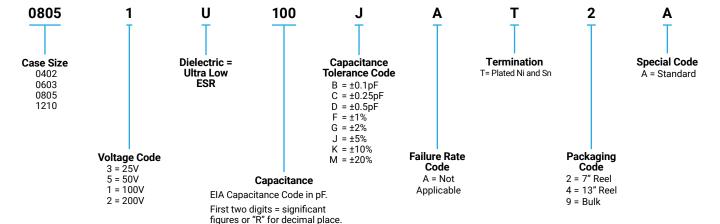
Letter	Α	В	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
	PAPER									EMBO	SSED			

U Dielectric

RF/Microwave C0G (NP0) Capacitors (RoHS)


Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

GENERAL INFORMATION


"U" Series capacitors are C0G (NP0) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0603, 0805, and 1210.

DIMENSIONS: inches (millimeters)

Size	A	В	С	D	E
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.024 (0.6) max	0.010 ± 0.006 (0.25 ± 0.15)	0.014 (0.36) min
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 (0.91) max	0.010 ± 0.005 (0.25 ± 0.13)	0.030 (0.76) min
0805	0.079±0.008 (2.01±0.2)	0.049±0.008 (1.25±0.2)	0.045 (1.15mm) max	0.020 ± 0.010 (0.51 ± 0.254)	0.020 (0.51) min
1210	0.126±0.008 (3.2±0.2)	0.098±0.008 (2.49±0.2)	0.055 (1.40mm) max	0.025 ± 0.015 (0.635 ± 0.381)	0.040 (1.02) min

HOW TO ORDER

Third digit = number of zeros or after "R" significant figures.

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz Size 0805 - 1.6 pF to 160 pF @ 1 MHz Size 1210 - 2.4 pF to 1000 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ $25^{\circ}C$ and rated WVDC $10^{11} \Omega$ min. @ 125° C and rated WVDC

Working Voltage (WVDC):

Size Working Voltage 0402 50, 25 WVDC 0603 200, 100, 50 WVDC 0805 200, 100 WVDC 1210 200, 100 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

Equivalent Series Resistance Typical (ESR):

0402 - See Performance Curve, page 300 0603 - See Performance Curve, page 300 0805 - See Performance Curve, page 300 1210 - See Performance Curve, page 300

Marking

Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request).

LEAD-FREE

LEAD-FREE COMPATIBLE COMPONENT

RoHS

COMPLIANT

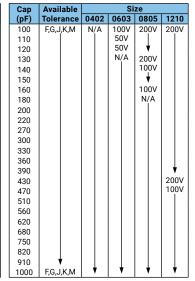
MILITARY SPECIFICATIONS

Meets or exceeds the requirements of MIL-C-55681

012521

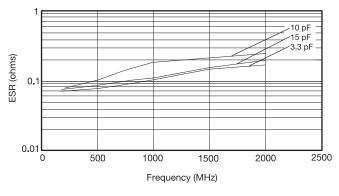
U Dielectric

RF/Microwave C0G (NP0) Capacitors (RoHS)

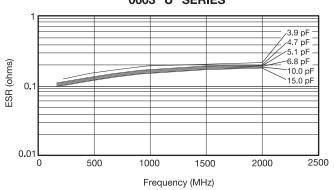


CAPACITANCE RANGE

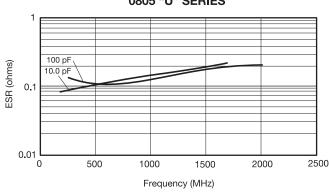
Cap	Available										
(pF)	Tolerance	0402	0603	0805	1210						
0.2	B,C	50V	N/A	N/A	N/A						
0.3											
0.4	♦										
0.5	B,C										
0.6	B,C,D										
0.7					i						
0.8	🔻				i						
0.9	B,C,D	+	♦	♦	♦						

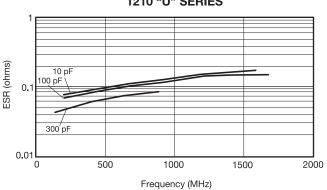

Cap	Available				
(pF)	Tolerance	0402	0603	0805	1210
1.0	B,C,D	50V	200V	200V	200V
1.1					
1.2					
1.3					
1.4					
1.5					
1.6					
1.7					
1.8					
1.9					
2.0					
2.1					
2.2					
2.4					
2.7					
3.0					
3.3					
3.6					
3.9					
4.3					
4.7					
5.1	l 1				
5.6	. ▼.				
6.2	B,C,D	↓	↓	↓	↓
6.8	B,C,J,K,M				1

Cap	Available					
(pF)	Tolerance	0402	0603	0805	1210	
7.5	B,C,J,K,M	50V	200V	200V	200V	
8.2	♦					
9.1	B,C,J,K,M					
10	F,G,J,K,M					
11						
12						
13						
15			♦			
18			200V			
20			100V			
22						
24						
27		♦				
30		50V				
33		N/A				
36						
39						
43						
47						
51						
56						
68						
75						
82	1 1	1 1			1	
91	▼	_ ▼	▼	- ▼	- ₹	



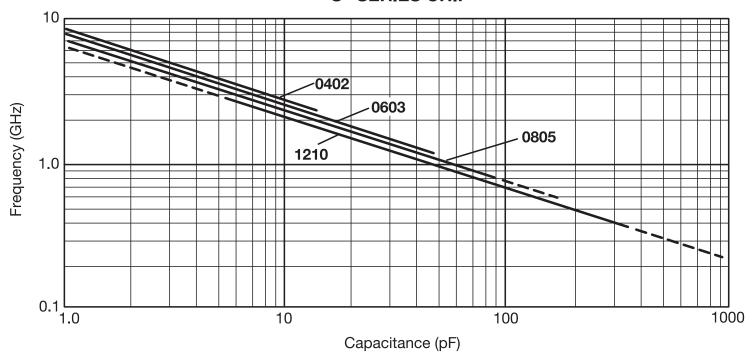
ULTRA LOW ESR, "U" SERIES


TYPICAL ESR vs. FREQUENCY 0402 "U" SERIES


TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES

TYPICAL ESR vs. FREQUENCY 0805 "U" SERIES

TYPICAL ESR vs. FREQUENCY 1210 "U" SERIES

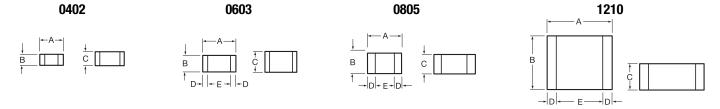

ESR Measured on the Boonton 34A

Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

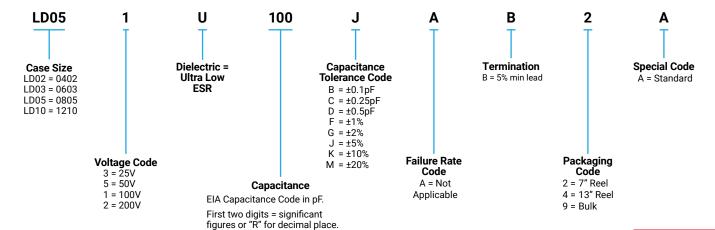
TYPICAL SERIES RESONANT FREQUENCY "U" SERIES CHIP

U Dielectric

RF/Microwave C0G (NP0) Capacitors (Sn/Pb)


Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

GENERAL INFORMATION


"U" Series capacitors are C0G (NP0) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0603, 0805, and 1210.

DIMENSIONS: inches (millimeters)

Size	A	В	С	D	E
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.024 (0.6) max	0.010 ± 0.006 (0.25 ± 0.15)	0.014 (0.36) min
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 (0.91) max	0.010±0.005 (0.25±0.13)	0.030 (0.76) min
0805	0.079±0.008 (2.01±0.2)	0.049±0.008 (1.25±0.2)	0.045 (1.15mm) max	0.020±0.010 (0.51±0.254)	0.020 (0.51) min
1210	0.126±0.008 (3.2±0.2)	0.098±0.008 (2.49±0.2)	0.055 (1.40mm) max	0.025±0.015 (0.635±0.381)	0.040 (1.02) min

HOW TO ORDER

Third digit = number of zeros or after "R" significant figures.

Not RoHS Compliant

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz Size 0805 - 1.6 pF to 160 pF @ 1 MHz

Size 1210 - 2.4 pF to 1000 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ 25° C and rated WVDC $10^{11} \Omega$ min. @ 125° C and rated WVDC

Working Voltage (WVDC):

Size Working Voltage 0402 - 50, 25 WVDC 0603 - 200, 100, 50 WVDC 0805 - 200, 100 WVDC 1210 - 200, 100 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

Equivalent Series Resistance Typical (ESR):

040 - See Performance Curve, page 306 0603 - See Performance Curve, page 306 0805 - See Performance Curve, page 306 1210 - See Performance Curve, page 306

Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request).

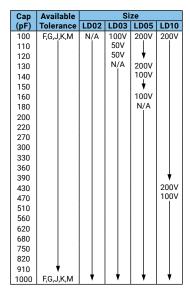
Military Specifications

Meets or exceeds the requirements of MIL-C-55681

012521

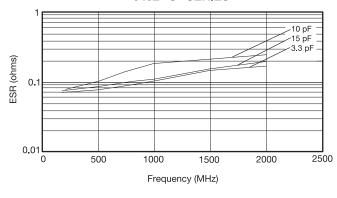
U Dielectric

RF/Microwave C0G (NP0) Capacitors (Sn/Pb)

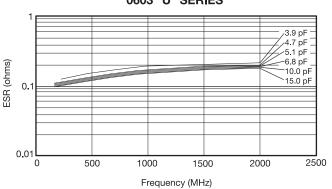


CAPACITANCE RANGE

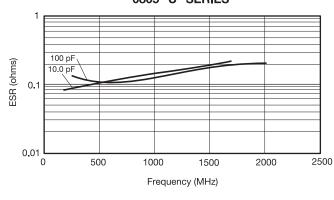
Cap	Available	Size				
(pF)	Tolerance	LD02	LD03	LD05	LD10	
0.2	B,C	50V	N/A	N/A	N/A	
0.3						
0.4	♦					
0.5	B,C					
0.6	B,Ç,D					
0.7						
0.8	▼					
0.9	B,C,D	*	♦	♦	♦	

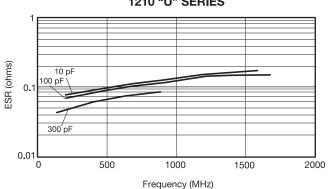

Cap	Available		Si	ze	
(pF)	Tolerance	LD02	LD03	LD05	LD10
1.0	B,C,D	50V	200V	200V	200V
1.1					
1.2					
1.3					
1.4					
1.5					
1.6					
1.7					
1.8					
1.9					
2.0					
2.1					
2.2					
2.4					
2.7					
3.0					
3.3					
3.6					
3.9					
4.3					
4.7					
5.1	l				
5.6	, v				
6.2	B,C,D	↓	↓	↓	↓
6.8	B,C,J,K,M	'			_ *

Сар	Available			ze	
(pF)	Tolerance	LD02	LD03	LD05	LD10
7.5	B,C,J,K,M	50V	200V	200V	200V
8.2	♦				
9.1	B,C,J,K,M				
10	F,G,J,K,M				
11					
12					
13					
15			▼		
18			200V		
20			100V		
22					
24					
27		🔻			
30		50V			
33		N/A			
36					
39					
43					
47					
51					
56					
68					
75					
82					
91	▼	▼	▼	▼	♥

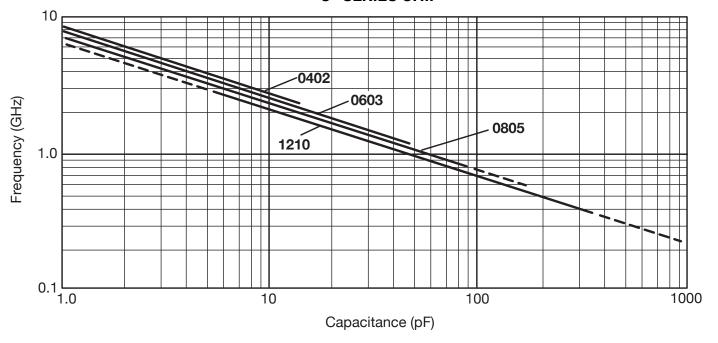


ULTRA LOW ESR, "U" SERIES


TYPICAL ESR vs. FREQUENCY 0402 "U" SERIES


TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES

TYPICAL ESR vs. FREQUENCY 0805 "U" SERIES


TYPICAL ESR vs. FREQUENCY 1210 "U" SERIES

ESR Measured on the Boonton 34A

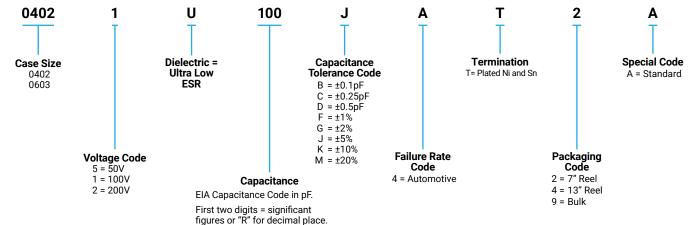
TYPICAL SERIES RESONANT FREQUENCY "U" SERIES CHIP

U Dielectric

RF/Microwave Automotive C0G (NP0) Capacitors (RoHS)

AEC Q200 Qualified Ultra Low ESR, "U" Series, C0G (NP0) Chip Capacitors

GENERAL INFORMATION


Automotive "U" Series capacitors are COG (NPO) chip capacitors specially designed for "Ultra" low ESR for applications in the automotive market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0402 and 0603.

DIMENSIONS: inches (millimeters)

inches (mm)

Size	Α	В	С	D	Е
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.024 max (0.6)	N/A	N/A
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 max (0.91)	0.010±0.005 (0.25±0.13)	0.030 min (0.76)

HOW TO ORDER

LEAD-FREE LEAD-FREE COMPATIBLE COMPONENT

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12} \Omega$ min. @ 25° C and rated WVDC $10^{11} \Omega$ min. @ 125° C and rated WVDC

Working Voltage (WVDC):

Working Voltage 0402 - 100, 50, 25 WVDC 0603 - 200, 100, 50 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

Third digit = number of zeros or after "R" significant figures.

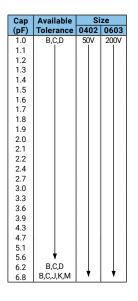
Equivalent Series Resistance Typical (ESR):

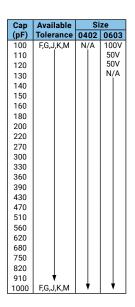
0402 See Performance Curve, page 303 0603 See Performance Curve, page 303

Automotive Specifications

Meets or exceeds the requirements of AEC Q200

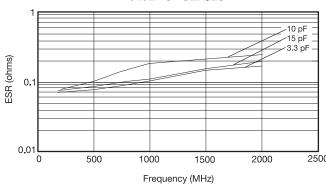
U Dielectric


RF/Microwave Automotive C0G (NP0) Capacitors (RoHS)

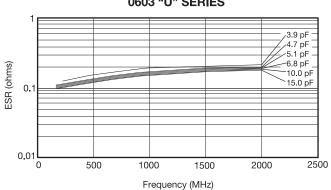

AEC Q200 Qualified, Ultra Low ESR, "U" Series, C0G (NP0) Chip Capacitors

CAPACITANCE RANGE

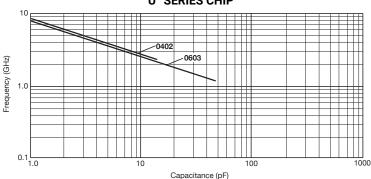
Cap	Available	Size		
(pF)	Tolerance	0402	0603	
0.2	B,C	50V	N/A	
0.3				
0.4	♦			
0.5	B,C			
0.6	B,C,D			
0.7				
0.8	▼			
0.9	B,C,D	♦	♦	



Cap	Available	Size		
(pF)	Tolerance	0402	0603	
7.5	B,C,J,K,M	50V	200V	
8.2	♦			
9.1	B,C,J,K,M			
10	F,G,J,K,M			
11				
12				
13				
15			🕴	
18			200V	
20			100V	
22				
24				
27		♦		
30		50V		
33		N/A		
36				
39				
43				
47				
51				
56				
68				
75				
82				
91	_ ₹	_ ▼	_ ▼	



ULTRA LOW ESR, "U" SERIES


TYPICAL ESR vs. FREQUENCY 0402 "U" SERIES

TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES

TYPICAL SERIES RESONANT FREQUENCY "U" SERIES CHIP

Communication Kits "U" Series

0402

Kit 5000 UZ					
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance		
0.5		4.7			
1.0		5.6	B (± 0.1pF)		
1.5		6.8	в (± 0.1pr)		
1.8	B (±0.1pF)	8.2			
2.2	в (±0.1µг)	10.0			
2.4		12.0	J (±5%)		
3.0		15.0	J (±5%)		
3.6					

^{***25} each of 15 values

0805

Kit 3000 UZ						
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance			
1.0		15.0				
1.5		18.0				
2.2		22.0				
2.4	B (±0.1pF)	24.0				
2.7		27.0				
3.0		33.0				
3.3		36.0	J (±5%)			
3.9		39.0	3 (±3%)			
4.7		47.0				
5.6		56.0				
7.5		68.0				
8.2		82.0				
10.0	J (±5 %)	100.0				
12.0	3 (±3 %)	130.0				

^{***25} each of 30 values

0603

Kit 4000 UZ						
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance			
1.0		6.8				
1.2		7.5	B (±0.1pF)			
1.5		8.2				
1.8		10.0				
2.0	B (±0.1pF)	12.0				
2.4		15.0				
2.7	Б (±0.1рі)	18.0				
3.0		22.0	J (±5%)			
3.3		27.0				
3.9		33.0				
4.7	7	39.0				
5.6		47.0				

^{***25} each of 24 values

1210

Kit 3500 UZ					
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance		
2.2		36.0			
2.7		39.0			
4.7		47.0			
5.1	B (±0.1pF)	51.0			
6.8		56.0			
8.2		68.0			
9.1		82.0			
10.0		100.0	J (±5%)		
13.0		120.0			
15.0		130.0			
18.0	1/+ 5 %)	240.0			
20.0	J (± 5 %)	300.0			
24.0		390.0			
27.0		470.0			
30.0		680.0			

^{***25} each of 30 values

X8R/X8L Dielectric

General Specifications

KYOCERA AVX has developed a range of multilayer ceramic capacitors designed for use in applications up to 150°C. These capacitors are manufactured with an X8R and an X8L dielectric material. X8R material has capacitance variation of ± 15% between -55°C and +150°C. The X8L material has capacitance variation of ±15% between -55°C to 125°C to 125°C and +15/40% from +125°C to +150°C.

The need for X8R and X8L performance has been driven by customer requirements for parts that operate at elevated temperatures. They provide a highly reliable capacitor with low loss and stable capacitance over temperature.

They are ideal for automotive under the hood sensors, and various industrial applications. Typical industrial application would be drilling monitoring system. They can also be used as bulk capacitors for high temperature camera modules.

Both X8R and X8L dielectric capacitors are automotive AEC-Q200 qualified. Optional termination systems, tin, FLEXITERM® and conductive epoxy for hybrid applications are available. Providing this series with our FLEXITERM® termination system provides further advantage to customers by way of enhanced resistance to both, temperature cycling and mechanical

0805	5	Α	104	K	4	<u>T</u>	2	Α
\Box	T	T	T	T	T	T	T	T
Size	Voltage	Dielectric	Capacitance	Capacitance	Failure	Terminations	Packaging	Special Code
0402	10V = Z	X8R = F	Code (in pF)	Tolerance	Rate	T = Plated Ni and Sn	2 = 7" Reel	A = Std. Product
0603	16V = Y	X8L = L	2 Sig. Digits +	$J = \pm 5\%$	4=Automotive	Z = FLEXITERM®**	4 = 13" Reel	
0805	25V = 3		Number of Zeros	K = ±10%	A = Not			
1206	50V = 5		e.g. 10 F = 106	$M = \pm 20\%$	Applicable			
	100V = 1		3		Applicable			

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

	Style		0603			0805		12	06
S	oldering	Ret	flow/Wa	ave	Ret	flow/W	ave	Reflow	/Wave
	WVDC	25V	50V	100V	25V	50V	100V	25V	50V
221	220				J	J	J		
271	270	G	G		J	J	J		
331	pF 330	G	G		J	J	J		
471	470	G	G	G	J	J	J		
681	680	G	G	G	J	J	J		
102	1000	G	G	G	J	J	J	J	J
152	1500	G	G	G	J	J	J	J	J
222	2200	G	G	G	J	J	J	J	J
332	3300	G	G	G	J	J	J	J	J
472	4700	G	G	G	J	J	J	J	J
682	6800	G	G	G	J	J	J	J	J
103	uF 0.01	G	G	G	J	J	J	J	J
153	0.015	G	G		J	J	N	J	J
223	0.022	G	G		J	J	N	J	J
333	0.033	G	G		J	J		J	J
473	0.047	G	G		J	J		J	J
683	0.068	G			N	N		М	М
104	0.1				N	N		М	М
154	0.15				N	N		М	М
224	0.22				N			М	М
334	0.33							М	M
474	0.47							М	Q
684	0.68							Q	Q
105	uF 1							Q	Q
	WVDC	25V	50V	100V	25V	50V	100V	25V	50V
	Style		0603			0805		12	06

Size		0603	0805	1206	1210
Solderin	ıg	Reflow/Wave	Reflow/Wave	Reflow/Wave	Reflow/Wave
Packagi	ng	All Paper	Paper/Embossed	Paper/Embossed	Paper/Embossed
(L) Length	mm (in)	1.60 ± 0.15 (0.063 ± 0.006)	2.01 ± 0.20 (0.079 ± 0.008)	3.20 ± 0.20 (0.126 ± 0.008)	3.30 ± 0.4 (0.130 ± 0.016)
(W) Width	mm (in)	0.81 ± 0.15 (0.032 ± 0.006)	1.25 ± 0.20 (0.049 ± 0.008)	1.60 ± 0.20 (0.063 ± 0.008)	2.50 ± 0.20 (0.098 ± 0.008)
(t) Terminal	mm (in)	0.35 ± 0.15	0.50 ± 0.25	0.50 ± 0.25	0.50 ± 0.25

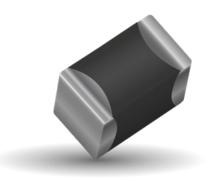
X₈L

	0!			0600		1	0005			- 10	06			1010	
_	Size Solderir		D-4	0603		Det	0805				06		D - 4	1210 low/W	
- \$			25V	flow/W 50V	ave 100V	25V	flow/W 50V	ave 100V	16V	Reflow 25V	/Wave 50V	11001	10V		
271	Сар	WVDC 270	G	G	1007	250	50 V	1000	100	25V	50 V	100V	100	50V	100V
331		330	G	G	G	J	J	J							
471	(pF)	470	G	G	G	J	J	J							
					_	_	_								
681		680	G	G G	G	J	J	J							
102 152		1000	G	G	G	J	J	J		J	J	J			
182		1500	G	G	_	_	_	J		_	_	_			
222		1800 2200	G G	G	G	J	J	J		J	J	J			
					G	J	J	J		J	J	J			
272		2700	G	G	G	J	J	J		J	J	J			
332		3300	G G	G	G	J	J	J		J	J	J			
392		3900			_	J	J	J		J	J	J			
472		4700	G	G	G	J	J	J		J	J	J			
562		5600	G	G	G	J	J	J		J	J	J			
682		6800	G		G	J	J	J		J	J	J			
822		8200	G	G	G	J	J	J		J	J	J			
103	Cap	0.01	G	G	G	J	J	J		J	J	J			
123	(µF)	0.012	G	G		J	J	J		J	J	J			
153		0.015	G	G G		J	J	J		J	J	J			
183		0.018	G			J	J	J		J	J	J			
223		0.022	G	G		J	J	J		J	J	J			
273		0.027	G	G		J	J	J		J	J	J			
333		0.033	G G	G G		J	J	N		J	J	J			
393		0.039				J	J	N		J	J	J			
473		0.047	G	G		J	J	N		J	J	J			
563		0.056	G	G		J	J	N		J	J	J			
683		0.068	G G	G		J	J	N N		J	J	J			
823		0.082				_	J			J	J	J			
104		0.1	G	G		J	J	N		J	J	M			
124 154		0.12 0.15				J	N N		-	J	J	M Q			
184		0.15				N	N		J	J	J	0			
224		0.18				N	N		J	J	J				
274		0.22				N	IN		J	M	M	Q		_	\vdash
334		0.27				N	-	<u> </u>	J	M	M	0			\vdash
394		0.33				N		_	M	M	P	Q		_	\vdash
474		0.39				N	<u> </u>	<u> </u>	M	M	P	Q			\vdash
684		0.47				N		 	M	M	P	Q			\vdash
824		0.82				N		_	M	M	P	Q		_	\vdash
105		0.82				N	_	<u> </u>	M	M	P	Q			\vdash
155		1.5				IN		_	M	M	-	Ų			\vdash
225		2.2					<u> </u>	<u> </u>	M	M	<u> </u>			Z	Z
475		2.2						<u> </u>	IVI	IVI				Z	
106								_		_			Z		\vdash
100		WVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V	10V	50V	100V
	SIZE	MANDC	237	0603	1007	237	0805	1000	107		06	1000	100	1210	1007
	SIZE			0003			0000			12				1210	

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max. Thickness	0.33 (-0.013)	0.56 (-0.022)	0.71 (-0.028)	0.9 (-0.035)	0.94 (-0.037)	1.02 (-0.04)	1.27 (-0.05)	1.4 (-0.055)	1.52 (-0.06)	1.78 (-0.07)	2.29 (-0.09)	2.54 (-0.1)	2.79 (-0.11)
			PAPER						FMB0:	SSFD			

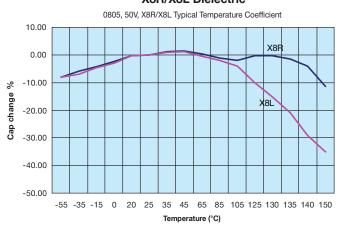
062821

X8R/X8L Dielectric


General Specifications

APPLICATIONS FOR X8R AND X8L CAPACITORS

- · All market sectors with a 150°C requirement
- Automotive on engine applications
- Oil exploration applications
- · Hybrid automotive applications
 - Battery control
 - Inverter / converter circuits
 - Motor control applications
- Water pump
- Hybrid commercial applications
 - Emergency circuits
 - Sensors
 - Temperature regulation


ADVANTAGES OF X8R AND X8L MLC CAPACI-**TORS**

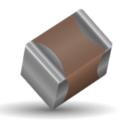
- Both ranges are qualified to the highest automotive AEC-Q200 standards
- Excellent reliability compared to other capacitor technologies
- RoHS compliant
- Low ESR / ESL compared to other technologies
- Tin solder finish
- FLEXITERM® available
- Epoxy termination for hybrid available
- 100V range available

ENGINEERING TOOLS FOR HIGH VOLTAGE MLC CAPACITORS

- Samples
- **Technical Articles**
- **Application Engineering**
- **Application Support**

X8R/X8L Dielectric

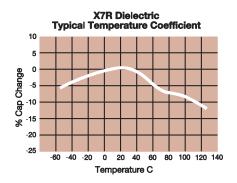
X8R/X8L Dielectric

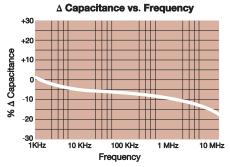


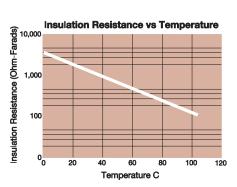
Parame	ter/Test	X8R/X8L Specification Limits	Measuring (Conditions
Operating Tem	perature Range	-55°C to +150°C	Temperature C	ycle Chamber
Capac	itance	Within specified tolerance	Freg.: 1.0 k	Hz + 10%
Dissipati	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 3.5% for 25V DC and 16V DC rating	Voltage: 1.0	
Insulation	Resistance	100,000ΜΩ or 1000ΜΩ - μF, whichever is less	Charge device with rated @ room tem	
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current mA (max) n 150% of rated voltage
	Appearance	No defects		n: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	V	
	Insulation Resistance	≥ Initial Value x 0.3	90 r	nm —
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solo 0.5 sec	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%	Die desire in content	I d
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutection 60 seconds. Store at 24 ± 2 hours before r	room temperature for
	Insulation Resistance	Meets Initial Values (As Above)	properties.	3 · · · · · ·
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	and measure after om temperature
	Appearance	No visual defects	_	
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r	
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h	
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	_	
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	voltage applied.
. Tannaity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature and humidity measu	for 24 ± 2 hours before
	Dielectric Strength	Meets Initial Values (As Above)	measu	ring

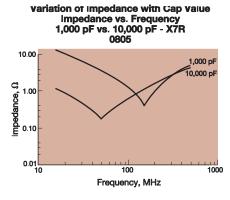
General Specifications

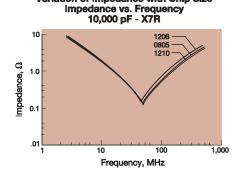
X7R formulations are called "temperature stable" ceramics and fall into EIA Class II materials. X7R is the most popular of these intermediate dielectric constant materials. Its temperature variation of capacitance is within ±15% from -55°C to +125°C. This capacitance change is non-linear.

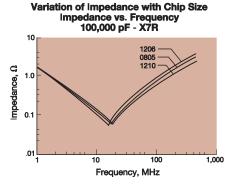

Capacitance for X7R varies under the influence of electrical operating con-ditions such as voltage and frequency.


X7R dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.


PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)


0805	<u>5</u>	<u>c</u>	103	<u>M</u>	<u>A</u>	<u>T</u>	<u>2</u>	<u>A</u>
Size (L" x W")	Voltage 4V = 4 6.3V = 6 10V = Z 16V = Y 25V = 3 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric X7R = C		Capacitance Tolerance J = ± 5%* K = ±10% M = ± 20% *≤1µF only, contact factory for additional values		Terminations T = Plated Ni and Sn Z= FLEXITERM®** *Optional termination **See FLEXITERM® X7R section	Packaging 2 = 7" Reel 4 = 13" Reel Contact Factory For Multiples	Special Code A = Std. Product


Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.



Variation of Impedance with Chip Size

Paramete	.,	X7R Specification Limits		easuring Conditions
Operating Tempo		-55°C to +125°C	Temp	perature Cycle Chamber
Capacit Dissipation		Within specified tolerance ≤ 10% for ≥ 50V DC rating≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating Contact Factory for DF by PN	Vo	Freq.: 1.0 kHz ± 10% oltage: 1.0Vrms ± .2V o > 10μF, 0.5Vrm @ 120Hz
Insulation R	esistance	10,000MΩ or 500MΩ - μ F, whichever is less		device with rated voltage for secs @ room temp/humidity
Dielectric S	Strength	No breakdown or visual defects	charge and disch	50% of rated voltage for 1-5 seconds, w/ arge current limited to 50 mA (max) th 150% of rated voltage for 500V devices.
	Appearance	No defects		
Resistance to	Capacitance Variation	≤ ±12%		Deflection: 2mm
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	T€	est Time: 30 seconds
	Insulation Resistance	≥ Initial Value x 0.3		
Soldera	bility	≥ 95% of each terminal should be covered with fresh solder		in eutectic solder at 230 ± 5°C or 5.0 ± 0.5 seconds
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)		solder at 260°C for 60 seconds. Store at 24 ± 2hours before measuring electrical
Solder Heat	Insulation Resistance	Meets Initial Values (As Above)		properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)		and measure after 24 ± 2 hours at room temperature
	Appearance Capacitance Variation	No visual defects ≤ ±12.5%	Pre-treatment: After m 10C for 2 hour, then	nounting, perform heat treatment 150+0/- stabilise for 24+/-2 hour at room temp, then measure.
	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	Charge device with	≥ rated voltage in test chamber set at
Load Life	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	125°C ± 2	2°C for 1000 hours (+48, -0).
	Dielectric Strength	Meets Initial Values (As Above)	treatment 150+0/-100 at roo	remove from test chamber, perform heat c for 2 hour, then stabilise for 24+/-2 hour om temp, then measure. A AVX for datasheet of specific parts.
	Appearance	No visual defects	Pre-treatment: After m	nounting, perform heat treatment 150+0/-
	Capacitance Variation	≤ ±12.5%	10C for 2 hour, then	stabilise for 24+/-2 hour at room temp, then measure.
Load	Dissipation Factor	≤ Initial Value x 2.0 (See Above)		per set at 85°C ± 2°C/ 85% ± 5% relative
Humidity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)		ours (+48, -0) with rated voltage applied.
	Dielectric Strength	Meets Initial Values (As Above)	treatment 150+0/-100	or 2 hour, then stabilise for 24+/-2 hour temp, then measure.

051222

PREFERRED SIZES ARE SHADED

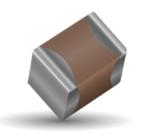
0175		01014			0001			1			100			1				.00				1				0.5				Г				100				
SIZE	\dashv	0101*	_		0201			-			102			-				503								05				_				1206				_
Soldering	\rightarrow	Reflow Only		Ret	flow (Only		-		Reflov	v/Wa	ve		1		- 1	Reflow	v/Wa	ve					- 1	Reflov	//Wav	/e						Ref	low/V	Vave			
Packaging		Paper/ Embossed			II Pap						Paper							aper								mbos						-			osse	d		
	mm (in.)	0.40 ± 0.02 (0.016 ± 0.0008)			50 ± 0 24 ± 0						± 0.1 ± 0.0						1.60 .063									± 0.20 ± 0.00								20 ± 0 26 ± 0).30).012))		
I W) Width	mm (in.)	0.20 ± 0.02 (0.008 ± 0.0008)			30 ± 0 11 ± 0						± 0.1 ± 0.0						0.81:									± 0.20 ± 0.00								50 ± 0 53 ± 0).30).012)			
	mm (in.)	0.10± 0.04 (0.004 ± 0.0016)			15 ± 0 06 ± 0						± 0.1						0.35									± 0.25								50 ± 0).25).010)			
WVDC	()	16	6.3	10	16		50	6.3	10		25	50	100	6.3	10	16				200	250	6.3	10	16	25			200	250	6.3	10	16	25			200	250	500
Cap 100 1	101	В	Α	Α	Α	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J													G	G	N	N	N
	151	В	Α	Α	Α	Α	Α	C	С	С	C	С	С	G	G	G	G	G	G	J	J									G	G	G	G	G	G	N	N	N
	221	В	Α	Α	Α	Α	Α	C	С	С	C	C	С	G	G	G	G	G	G	J	J	Е	Е	Е	Е	Е	Е	Е	J	J	J	J	J	J	J	N	N	Р
330 3	331	В	Α	Α	Α	Α	Α	C	С	С	С	C	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
	471	В	Α	Α	Α	Α	Α	C	С	С	С	C	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
	581	В	Α	Α	Α	Α	Α	c	C	C	c	c	C	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	P
	102	В	Α	Α	Α	Α	Α	c	C	C	c	c	C	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	P
	152		Α	Α	Α	Α		c	C	С	c	c	C	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	P
	222		Α	Α	Α	Α		С	С	С	C	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
3300 3	332		Α	Α	Α	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
	392		Α	Α	Α	Α																																\neg
	172		Α	Α	Α	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
	562		A	Α	Α	Α		_	-	_	1	-	-	-	-	-	-	-	-	_	-		_	-	-	_	_	-	-	_	-	-	_	-	-			
	582		Α	Α	Α	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	Р	Р	J	J	J	J	J	J	N	N	Р
	103		Α	Α	Α	Α		c	C	C	c	c	C	G	G	G	G	G	G	J	J		J	J	J	J	J	P	P	J	J	J	J	J	J	N	N	P
	123							-	-	-	1	-	1	-	-	-	-	-	-	_	-		-	-	-	-	_		-	-	-	-	-	1	-			
(1 /	153							С	С	С	С	Е		G	G	G	G	G	J	J	J		J	J	J	J	J	Р	Р	J	J	J	J	J	J	N	N	Q
	183																																					
0.022 2	223		Α	Α	Α			С	С	С	С	E		G	G	G	G	G	J	J	J		J	J	J	J	J	Р	Р	J	J	J	J	J	J	Р	Р	Q
0.027 2	273																																					
0.033 3	333							С	С	С	С	Е		G	G	G	G	J	J				J	J	J	J	Р	Р	Р	J	J	J	J	J	J	Q	Q	Q
	393																																				Ì	
	173					t		С	С	С	С	Е		G	G	G	G	J	J				J	J	J	J	Р	Р	Р	J	J	J	J	J	J	Q	Q	Q
0.068 6	583					t		С	С	C	C	E		G	G	G	G	J	J				J	J	J	J	Р	Р		J	J	J	J	J	Р	Q	0	
0.082 8	323																																					\neg
0.1 1	104		Α					С	С	С	С	Е		G	G	G	G	J	J				J	J	J	J	Р	Р		J	J	J	J	J	Р	Q	Q	\neg
0.12 1	124					Ì																																\neg
0.15 1	154									İ				G	G	G	J	J					N	N	N	N	Р			K	К	К	Κ	K	Q	Q	Q	\neg
0.22 2	224							С	С	С	С			G	G	J	J	J					N	N	N	N	Р			К	К	К	К	К	Q	Q	Q	\neg
0.33 3	334													J	J	J	J	J					Р	Р	Р	Р	Р			K	K	K	K	N	Q			\Box
0.47 4	174					Ì		С	С			ĺ		J	J	J	J	J					Р	Р	Р	Р	Р			М	М	М	М	Х	Х			\neg
0.68 6	_													J	J	J							Р	Р	Р					М	М	М	М	Х	Х			\neg
1.0 1	_							С						J	J	J	J	К					Р	Р	Р	Р				М	М	М	М	Х	Х			\neg
2.2 2	225									Г				J	J	К							Р	Р	Р	Р				М	М	М	Х	Х	Х	Г		\neg
4.7 4	475									Г				K									Р	Р	Р					Х	Х	Х	Х	Z				\neg
10 1	106										Ī		İ									Р	Р	Р						Х	Х	Х	Х			П	İ	\neg
22 2	226				İ	İ					Ī		i i		Ī			Ī												Х	Х				Ī	Г	İ	\neg
47 4	176					İ					1		i i		1			1	İ															İ	1	Г		\neg
100 1	107					İ			İ	T	1		1	İ	1			1	İ															İ	1			\neg
WVDC		16	6.3	10	16	25	50	6.3	10	16	25	50	100	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	500
SIZE		0101*			0201	İ				04	102				•		06	503							08	05							•	1206	5			
																																						_

ı	Letter	Α	В	С	E	G	J	K	М	N	Р	Q	X	Υ	Z
I	Max.	0.33	0.22	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
-	Thickness	(0.013)	(0.009)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
				PAF	PER						EMBO	SSED			

NOTE: Contact factory for non-specified capacitance values

^{**}Contact Factory for Specifications

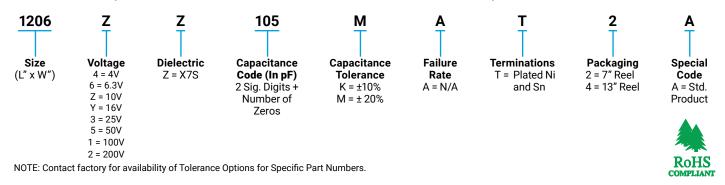
PREFERRED SIZES ARE SHADED


	SIZE					1210						18	12				1825				2220				2225	
S	oldering				R	eflow Or	nly						w Only			R	eflow Or	nly		R	eflow Or	nly		R	eflow On	ıly
P	ackaging				Pape	er/Embo	ssed					All Em	bossed			All	I Embos	sed		Al	l Embos	sed		All	Emboss	sed
(L) Len	gth	mm (in.)				3.30 ± 0. 130± 0.0							± 0.40 ± 0.016)				1.50 ± 0.4 177 ± 0.0				5.70 ± 0.5 224 ± 0.0				.70 ± 0.4 224 ± 0.0	
W) Wid	th	mm (in.)				.50 ± 0.3 098 ± 0.0							± 0.40 ± 0.016)				5.40 ± 0.4 252 ± 0.0				5.00 ± 0.4 197 ± 0.0				.30 ± 0.4 248 ± 0.0	
(t) Tern	ninal	mm (in.)				.50 ± 0.2 020 ± 0.0							± 0.36 ± 0.014)				0.61 ± 0.3 024 ± 0.0				0.64 ± 0.3 025 ± 0.0				.64 ± 0.3	
	W	/VDC	10	16	25	50	100	200	500	16	25	50	100	200	500	50	100	200	25	50	100	200	500	50	100	200
Cap	100	101																						7	~ W	
(pF)	150	151																					اسيد		~ <u>`</u>	13
	220	221				K	K	K	М															7) It
	330	331				K	K	K	М			N	N	N	N								_	$\overline{}$		
	470	471				K	K	K	М			N	N	N	N								L	1		_
	680	681				K	K	K	М			N	N	N	N									31.55	İ	
	1000	102	K	K	K	K	K	K	М	Ν	N	N	N	N	N	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
	1500	152	K	K	K	K	K	K	М	N	N	N	N	N	N	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
	2200	222	K	K	K	K	K	K	М	Ν	N	N	N	N	N	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
	3300	332	K	K	K	K	K	K	Р	N	N	N	N	N	N	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
	4700	472	K	K	K	K	K	K	Р	N	N	N	N	N	Р	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
	6800	682	K	K	K	K	K	K	P	N	N	N	N	N	Р	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
Сар	0.01	103	K	K	K	K	K	K	P	N	N	N	N	N	Р	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
(μF)	0.015	153	K	K	K	K	K	K	P	N	N	N	N	N	Р	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
	0.022	223	K	K	K	K	K	Р	Q	N	N	N	N	N	Р	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
	0.033	333	K	K	K	K	K	Р	Х	N	N	N	N	N	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
	0.047	473	K	K	K	K	K	Р	Х	N	N	N	N	Р	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
	0.068	683	K	K	K	K	K	Р	Х	N	N	N	N	Р	Х	Х	X	Х		X	Х	Х	Х	Х	Х	Х
	0.1	104	K	K	K	K	K	Р	Х	N	N	N	Р	P	Х	Х	Х	Х		Х	Х	X	Х	Х	Х	Х
	0.15	154	K	K	K	М	P	Z	Z	N	N	N	Р	P	Z	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
	0.22	224	K	K	K	М	Р	Z		N	N	N	Р	Q	Z	Х	Х	Х		X	Х	Х	Х	Х	Х	Х
	0.33	334	K	K	K	M	Q	Z		N	N	N	Р	X	Z	Х	Х	X		Х	Х	X	Х	Х	Х	Х
	0.47	474	М	М	М	Р	Q	Z		N	N	N	Q	Х	Z	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
	0.68	684	М	М	Р	Х	Х	Z		Q	Q	Q	Q	Z		Х	X	Х		Х	Х	Х	Z	Х	Х	Х
	1.0	105	Р	Р	Р	Х	Z			Q	Q	Q	Х	Z		Х	X	Х		Х	Х	Х	7	Х	Х	Х
	1.5	155	N	N	Z	Z	Z				Z	Z	Z			Х	Х	Z		Х	Х	Z		Х	Х	Z
	2.2	225	Χ	Х	Z	Z	Z				Z	Z	Z			Х	Х	Z		Х	Х	Z		Х	Х	Z
	3.3	335	Χ	Х	Z	Z	Z				Z	Z	Z			Х	Х			Х	Z			Х	Х	
	4.7	475	Z	Z	Z	Z	Z				Z	Z	Z			Х	Х			Z	Z			Х	Х	
	10	106	Z	Z	Z	Z				Z	Z	Z				Z	Z			Z	Z			Z	Z	
	22	226	Z	Z	Z														Z							
	47	476	Z																							
	100	107																								
	WVDC		10	16	25	50	100	200	500	16	25	50	100	200	500	50	100	200	25	50	100	200	500	50	100	200
	SIZE					1210						18	12				1825				2220				2225	

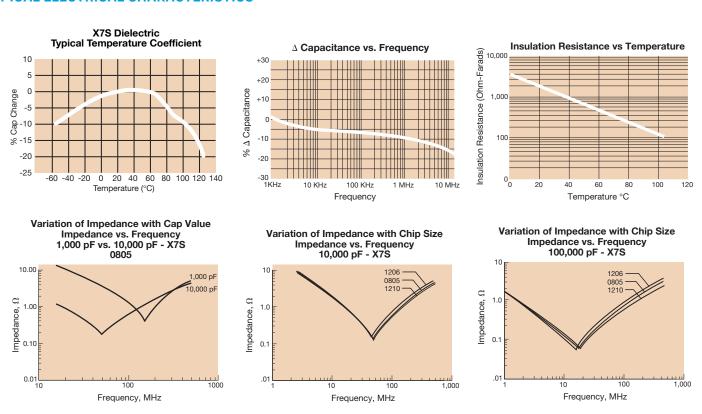
Letter	Α	В	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z	7
Max.	0.33	0.22	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79	3.30
Thickness	(0.013)	(0.009)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)	(0.130)
•			PAI	PER							MBOSSE	D			

NOTE: Contact factory for non-specified capacitance values

General Specifications


GENERAL DESCRIPTION

X7S formulations are called "temperature stable" ceramics and fall into EIA Class II materials. Its temperature variation of capacitances within ±22% from -55°C to +125°C. This capacitance change is non-linear.


Capacitance for X7S varies under the influence of electrical operating conditions such as voltage and frequency.

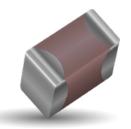
X7S dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

TYPICAL ELECTRICAL CHARACTERISTICS

Parame	ter/Test	X7S Specification Limits	Measuring	Conditions
	perature Range	-55°C to +125°C	Temperature C	ycle Chamber
	on Factor	Within specified tolerance ≤ 5.0% for ≥ 100V DC rating ≤ 5.0% for ≥ 25V DC rating ≤ 10.0% for ≥ 10V DC rating ≤ 10.0% for ≤ 10V DC rating Contact Factory for DF by PN	Freq.: 1.0 k Voltage: 1.0 For Cap > 10 μF, 0	Vrms ± .2V
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo	
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50	and discharge current
	Appearance	No defects	Deflection	
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	30 seconds 7 1mm/sec
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 1	mm —
Solde	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measurin	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		_
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 test chamber se	
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h	
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rate	d voltage applied.
Humaity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature ar	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours bef	ore measuring.

PREFERRED SIZES ARE SHADED

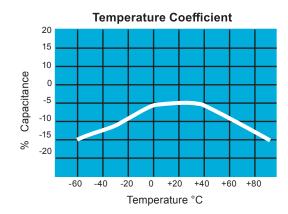

			-	<u></u>		[
SIZI	E [0	402	0603	0805		1206		1210
Solder	ing	Reflo	w/Wave	Reflow/Wave	Reflow/Wave	Re	flow/W	ave	Reflow Only
Packag	ging	All	Paper	All Paper	Paper/Embossed	Pape	r/Embo	ssed	Paper/Embossed
(L) Length	mm	1.00	± 0.10	1.60 ± 0.15	2.01 ± 0.20	3.	20 ± 0.:	20	3.20 ± 0.20
(L) Length	(in.)		± 0.004)	(0.063 ± 0.006)	(0.079 ± 0.008)		26 ± 0.		(0.126 ± 0.008)
W) Width	mm		± 0.10	0.81 ± 0.15	1.25 ± 0.20		60 ± 0.		2.50 ± 0.20
	(in.)		± 0.004)	(0.032 ± 0.006)	(0.049 ± 0.008)		63 ± 0.		(0.098 ± 0.008)
(t)	mm		± 0.15	0.35 ± 0.15	0.50 ± 0.25		50 ± 0.:		0.50 ± 0.25
Terminal	(in.)		± 0.006)	(0.014 ± 0.006)	(0.020 ± 0.010)		20 ± 0.		(0.020 ± 0.010)
	WVDC	4	6.3	6.3	4	10	50	100	6.3
Сар	100								
(pF)	150								
	220					ļ	-	-	~w
	330						-[-		VV
	470 680					~	\sim	_	7 1
	1000							7)	$\mathcal{L}_{\mathcal{L}}$
	1500						_	ユレ	
	2200								
	3300					ł		*t	
	4700					ŀ	l .	ı î	ı
	6800								
Сар	0.010								
(μF)	0.015								
(μι)	0.013					ŀ			
	0.033		С						
	0.047		C						
	0.047		C						
	0.10		C						
	0.15								
	0.22								
	0.33			G					
	0.47			Ğ					
	0.68			Ğ		ĺ	l		
	1.0	Е		G					
1	1.5				N	ĺ	ĺ	İ	
	2.2	Е			N			Q	
	3.3				N				
	4.7				N	Q	l		
	10						L		
	22								Z
	47								
	100								
	WVDC	4	6.3	6.3	4	10	50	100	6.3
	SIZE	0	402	0603	0805		1206		1210

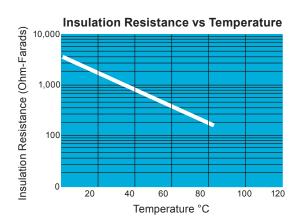
Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

^{*}Contact Factory for Specifications

General Specifications

GENERAL DESCRIPTION


- · General Purpose Dielectric for Ceramic Capacitors
- EIA Class II Dielectric
- Temperature variation of capacitance is within ±15% from -55°C to +85°C
- Well suited for decoupling and filtering applications
- Available in High Capacitance values (up to 100μF)


PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

1210	4	D	107	M	Α	T	2	Α
	T	T	T	T	T	T	T	T
Size	Voltage	Dielectric	Capacitance	Capacitance	Failure	Terminations	Packaging	Special
(L" x W")	4 = 4V	D = X5R	Code (In pF)	Tolerance	Rate	T = Plated Ni	2 = 7" Reel	Code
0101**	6 = 6.3V		2 Sig. Digits +	$K = \pm 10\%$	A = N/A	and Sn	4 = 13" Reel	A = Std.
0201	Z = 10V		Number of	$M = \pm 20\%$				
0402	Y = 16V		Zeros					
0603	3 = 25V							
0805	D = 35V							A .
1206	5 = 50V							
1210	1 = 100V							The same
1812								
**EIA 010	005							RoHS COMPLIANT

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

TYPICAL ELECTRICAL CHARACTERISTICS

Parame	ter/Test	X5R Specification Limits	Measuring C	onditions
		-55°C to +85°C	Temperature Cy	cle Chamber
		Within specified tolerance ≤ 2.5% for ≥ 50V DC rating ≤ 12.5% for 25V, 35V DC rating ≤ 12.5% Max. for 16V DC rating and lower Contact Factory for DF by PN	Freq.: 1.0 kł Voltage: 1.0V For Cap > 10 μF, 0.9	rms ± .2V
Insulation	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with rate secs @ room te	
Dielectric	g Temperature Range Capacitance Sipation Factor Ilation Resistance Ilectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor	No breakdown or visual defects	Charge device with 250% seconds, w/charge and disto 50 mA	scharge current limited
	Appearance	No defects	Deflection	: 2mm
Resistance to	tance to esses Capacitance Variation Dissipation Factor Insulation Resistance Solderability Appearance Capacitance Variation Dissipation Factor Insulation Resistance Unique to er Heat Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Dissipation Factor Insulation Dissipation Factor Insulation Dissipation Factor Insulation	≤ ±12%	Test Time: 30	
Flexure Stresses		Meets Initial Values (As Above)		
		≥ Initial Value x 0.3	90 m	m ———
Solder		≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solo ± 0.5 sec	
		No defects, <25% leaching of either end terminal		
		≤ ±7.5%		
Resistance to Solder Heat	Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Capacitance Capacitance	Meets Initial Values (As Above)	Dip device in eutectic 60seconds. Store at roon	n temperature for 24 ±
		Meets Initial Values (As Above)	2hours before measuring	g electrical properties.
		Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
		≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Capacitance Variation Dissipation	Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes
	Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
		Meets Initial Values (As Above)	Repeat for 5 cycles and hours at room t	
	Appearance	No visual defects	Charge device with 1.5X	rated voltage in test
		≤ ±12.5%	chamber set at 85°C ± (+48, -	2°C for 1000 hours
Load Life		≤ Initial Value x 2.0 (See Above)	Note: Contact factory for part numbers that are to	
		≥ Initial Value x 0.3 (See Above)	voltaç	
		Meets Initial Values (As Above)	Remove from test chambe temperature for	
	Appearance	No visual defects		
		≤ ±12.5%	Store in a test chamber se 5% relative humidity for 10	
Load Humidity	•	≤ Initial Value x 2.0 (See Above)	rated voltage	e applied.
,		≥ Initial Value x 0.3 (See Above)	Remove from chamber a temperature and 24 ± 2 hours befo	l humidity for
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 Hours bero	

PREFERRED SIZES ARE SHADED

Case Size		010	01*			0201					04	02						0603							0805	,		
Soldering			v Only		Re	flow O	nlv			-	Reflow		e				Refl	ow/W						Ref	ow/W			
Packaging		Paper/Er				II Pape						aper						II Pap								ossed		
(L) Length	mm (in.)	0.40 ±	± 0.02		0.0	60 ± 0. 24 ± 0.	.09				1.00 : 0.040 :	± 0.20					1.6	50 ± 0. 53 ± 0.	.20					2.	01 ± 0 79 ± 0	.20		-
W) Width	mm (in.)	0.20 ±				30 ± 0. 11 ± 0.					0.50 : 0.020 :							30 ± 0. 31 ± 0.							25 ± 0 49 ± 0			
(t) Terminal	mm (in.)	0.10 : (0.004 ±				15 ± 0. 06 ± 0.					0.25 :							35 ± 0. 14 ± 0.							50 ± 0 20 ± 0			
Voltage:		6.3	10	4	6.3	10	16	25	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Cap (pF) 100	101		В					Α																				
150	151		В					Α																				
220	221		В					Α						С														
330	331		В					Α						С														
470	471		В					Α						С														
680	681		В					Α						С														
1000	102		В				Α	Α						С														
1500	152	В	В				Α	Α						С														
2200	222	В	В			Α	Α	Α						С														
3300	332	В	В			Α	Α	Α						С														
4700	472	В	В			Α	Α	Α					С								G							
6800	682	В	В			Α	Α	Α					С								G							
Cap (µF) 0.01	103	В	В			Α	Α	Α					С						G	G	G							
0.015	150	В											С						G	G	G							
0.022	223	В			Α	Α	Α	Α				С	С						G	G	G							N
0.033	333	В										С							G	G	G							N
0.047	473	В			Α	Α	Α	Α				С	С						G	G	G							N
0.068	689	В										С							G		G							N
0.1	104	В			Α	Α	Α	Α			С	С	С	С					G	G	G					N	N	N
0.15	154																		G							N	N	
0.22	224	В		Α	Α	Α				С	С	С	С	С				G	G							N	N	N
0.33	334																	G	G							N		
0.47	474	В		Α	Α				С	C	С	С	С	E				G	J							N	Р	Р
0.68	684																	G								N		
1.0	105			Α	Α	С	С		С	С	С	С	С		G	G	G	G	J	G	G				N	N	Р	Р
1.5	155																											
2.2	225			С	С	С			С	С	С	С	С		G	G	J	J	J	K	K			N	N	P	Р	Р
3.3	335														J	J	J	J					N	N				
4.7	475			С	С				Е	E	E	E			J	J	J	G	K			N	P	J	N	N	Р	Р
10	106								Е	E	E				K	J	K	K	K			Р	Р	Р	Р	P		
22	226								E	G					K	K	K					Р	P	Р	Р	P		
47	476														K	K						Р	Р	Р				
100	107																											
Voltage:		6.3	10	4	6.3	10	16	25	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Case Size		010	01*			0201					04	02						0603							0805			

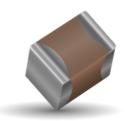
Letter	Α	В	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
			PAI	PER						EMBO	SSED			

PAPER and EMBOSSED available for 01005 NOTE: Contact factory for non-specified capacitance values *EIA 01005

PREFERRED SIZES ARE SHADED

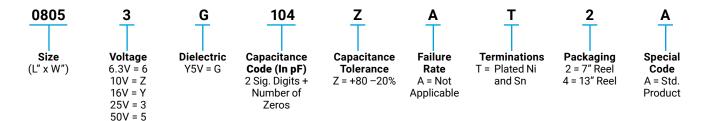
Soldering Packaging (L) Length	mm			Refl	ow/W	lave													2 2			
Packaging						uvc					Re	flow 0	nly					Re	flow 0	nly		
				Paper,	/Emb	ossec	1					r/Emb						All E	mbos	sed		
(L) Length					20 ± 0.							20 ± 0.	-						50 ± 0.			
	(in.)				26 ± 0.							26 ± 0.							77 ± 0.			
W) Width	mm				0 ± 0.							50 ± 0.							20 ± 0.			
11,111411	(in.)				3 ± 0.							98 ± 0.							26 ± 0.			
(t) Terminal	mm				50 ± 0.							50 ± 0.							51 ± 0.			
	(in.)	4	()		20 ± 0.		35	Ε0	4	()		20 ± 0.		35	F0	4	()		24 ± 0.	25	35	
Voltage:	101	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	33	50
Cap (pF) 100 150	101 151																					
220	221																					
330	331																					
470	471													_								
680	681																					
1000	102																					
1500	152																					
2200	222																					
3300	332																					
4700	472																					
6800	682																					
Cap (µF) 0.01	103																					
0.015	150																					
0.022	223																					
0.033	333																					
0.047	473																					
0.068	689																					
0.1	104																					
0.15	154																					
0.22	224																					
0.33	334													.,								
0.47	474					Q	Q							Х	Х							
0.68	684					0		0					V	V	V							
1.0	105 155					Q	Q	Q					Х	Х	Х							
2.2	225			Q	Q	Q	0	Q					Х	Z	Z							
3.3	335		Q	Q	Ų	Ų	Ų	Ų					^									
4.7	475	Χ	X	X	Х	Х	Х	Х			Z	Z	Z	Z	Z							
10	106	X	X	X	X	X	X	X		Х	X	Z	Z	Z	Z					Z		
22	226	X	X	X	X	X			Z	Z	Z	Z	Z			Z	Z	Z	Z			
47	476	X	X	X	X	- `			Z	Z	Z	Z	Z			_	_	_	_			
100	107		X X							Z		_	_									
Voltage:		4							4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Case Size					1206							1210			•				1812			

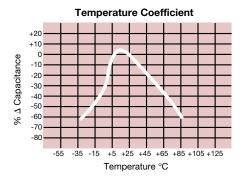
Letter	Α	В	С	E	G	J	K	М	N	P	Q	X	Υ	Z
Max.	0.33	0.22	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.009)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PA	PER						ЕМВО	SSED			

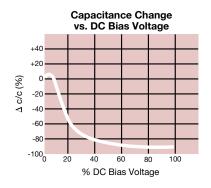

PAPER and EMBOSSED available for 01005

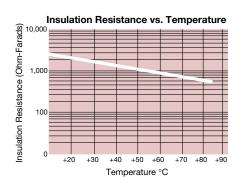
NOTE: Contact factory for non-specified capacitance values *EIA 01005

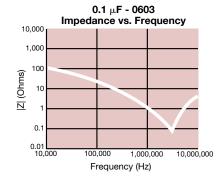
General Specifications

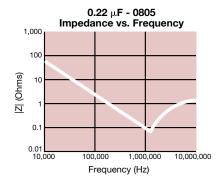

GENERAL DESCRIPTION

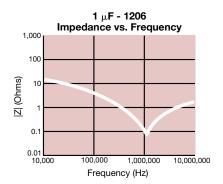

Y5V formulations are for general-purpose use in a limited temperature range. They have a wide temperature characteristic of +22% -82% capacitance change over the operating temperature range of -30°C to +85°C.


These characteristics make Y5V ideal for decoupling applications within limited temperature range.




PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)





101316

Y5V Dielectric

Parame	ter/Test	Y5V Specification Limits	Measuring (Conditions
Operating Tem	perature Range	-30°C to +85°C	Temperature C	ycle Chamber
Capac	itance	Within specified tolerance		
Dissipati	on Factor	≤ 5.0% for ≥ 50V DC rating ≤ 7.0% for 25V DC rating ≤ 9.0% for 16V DC rating ≤ 12.5% for ≤ 10V DC rating	Freq.: 1.0 k Voltage: 1.0' For Cap > 10 μF, 0.	Vrms ± .2V
Insulation	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with rated @ room tem	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50	and discharge current
	Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Solderability Appearance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Appearance Capacitance Variation	No defects	Deflectio	n: 2mm
Resistance to		≤ ±30%	Test Time: 3	
Flexure Stresses		Meets Initial Values (As Above)	\ \tag{\frac{1}{2}}	
		≥ Initial Value x 0.1	90 n	nm ———
Solde	Capacitance Variation Dissipation Factor Insulation Resistance Solderability Appearance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Capacitance Variation Dissipation Dissipation Dissipation Dissipation Dissipation Dissipation	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.5	
		No defects, <25% leaching of either end terminal		
		≤ ±20%		
Resistance to Solder Heat		Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
		Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Heat Factor Insulation Resistance Dielectric Strength Appearance Capacitance	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -30°C ± 2°	30 ± 3 minutes
	Dielectric Strength Appearance Capacitance Variation	≤ ±20%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock		Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes
		Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
		Meets Initial Values (As Above)	Repeat for 5 cycles 24 ±2 hours at ro	
	Appearance	No visual defects		
	•	≤ ±30%	Charge device with twic	
Load Life		≤ Initial Value x 1.5 (See Above)	for 1000 hou	
		≥ Initial Value x 0.1 (See Above)	Remove from test chamb temperature for 24 ± 2 ho	
		Meets Initial Values (As Above)		
	Appearance	No visual defects		
		≤ ±30%	Store in a test chamber s 5% relative humidi	
Load Humidity	Dissipation Factor	≤ Initial Value x 1.5 (See above)	(+48, -0) with rated	voltage applied.
·······································	Insulation Resistance	≥ Initial Value x 0.1 (See Above)	Remove from chamber temperature an 24 ± 2 hours bef	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 Hours ben	ore measuring.

Y5V Dielectric

Capacitance Range

PREFERRED SIZES ARE SHADED

SIZE		02	01			0402				06	03			08	05			12	06			12	10	
Solderi	ng	Reflow	Only		Ref	low/W	ave		F	Reflow	//Wav	e		Reflow	//Wav	е		Reflow	Mfeve	9	F	Reflow	/Wav	е
Packag	ing	All Pa	aper		Α	II Pape	er			All F	aper		Pa	per/Ei	nbos	sed	Pa	aper/Er	nboss	sed	Pa	per/Er	nboss	sed
/1 \ 1 am makh	mm	0.60 ±	0.09		1.0	00 ± 0.	10			1.60 :	± 0.15			2.01 :	± 0.20			3.20 ±	0.20			3.20 :	± 0.20	
(L) Length	(in.)	(0.024 ±	0.004)		(0.04	40 ± 0.	004))	(0	0.063 :	± 0.00	6)	(0	0.079 :	± 0.00	8)	(0.126 ±	0.00	8)	(0	.126 :	± 0.00	8)
1A/\ \A/: alab	mm	0.30 ±	0.09		0.5	50 ± 0.	10			.81 ±	0.15			1.25 :	± 0.20			1.60 ±	0.20			2.50 :	± 0.20	
W) Width	(in.)	(0.011 ±	0.004)		(0.02	20 ± 0.	004))	(0	0.032 :	± 0.00	6)	(0	0.049 :	± 0.00	8)	(0.063	0.00	8)	(0	.098 :	± 0.00	8)
(t) Terminal	mm	0.15 ±	0.05		0.2	25 ± 0.	15			0.35	± 0.15			0.50	± 0.25			0.50 ±	0.25			.50 ±	0.25	
(t) Terminar	(in.)	(0.006 ±	0.002)		$(0.0^{\circ}$	10 ± 0.	006))	(0	0.014 :	± 0.00	6)	(0	0.020 :	± 0.01	0)	(0.020 ±	£ 0.010	0)	(0	.020 :	± 0.01	0)
	WVDC	6.3	10	6	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50
Сар	820																				X		W	2000
(pF)	1000		Α																١.	لاسيا	<		7	4
	2200		Α																		5	7		ŢT
	4700		Α																		$\overline{}$	_		
Сар	0.010	Α	Α																		ŀ	- T		
(μF)	0.022	Α																		1			l	
	0.047	Α				С																		
	0.10				С	С					G	G				K								
	0.22									G														
	0.33									G														
	0.47					С				G	G													
	1.0			С	С				G	G	J			N	N	N		М	М	М				N
	2.2				С				J					N	N				K	Q				
	4.7												N	N	N			Р	Q			N	N	
	10.0												N	Р			Q	Q	Х		Х	Q	Q	Z
	22.0																Q				Х	Z		
	47.0																							
	WVDC	6.3	10	6	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50
SIZE		02)1			0402				06	03			08	05			12	06			12	10	
Letter	Α	С	E	1	G	J		K		M	N		Р	1	Q	Х		Υ	1	Z				
Max.	0.33	0.56	0.71	0	1.90	0.94	4	1.02	_	.27	1.4	0	1.52		.78	2.2		2.54		.79				
Thickness	(0.013)	(0.022)	(0.028)	+-	.035)	(0.03		(0.040)	+	050)	(0.05	_	(0.060)	_	070)	(0.09	-	(0.100)	+	110)				
HILLKHESS	(3.0.0)	(0.022)	(0.020)	1,0.		(5.50	- /	(3.0.0)	(3.	- 50,	(0.00	٠-/ ١	(000)	, (3.		(0.00	-,	(200)	, ,	,				

PAPER

060120

EMBOSSED

MLCC Gold Termination — AU Series

KYOCERA AVX will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of Gold. This termination is indicated by the use of a "7" or "G" in the 12th position of the KYOCERA AVX Catalog Part Number. This fulfills KYOCERA AVX's commitment to providing a full range of products to our customers. Please contact the factory if you require additional information on our MLCC Gold Termination.

PART NUMBER

AU03	Y	G	104	<u>K</u>	<u>A</u>	7	<u>2</u>	<u>A</u>
Size AU02 - 0402 AU03 - 0603 AU05 - 0805 AU06 - 1206 AU10 - 1210 AU12 - 1812 AU13 - 1825 AU14 - 2225 AU16 - 0306 AU17 - 0508	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric COG (NPO) = A X7R = C X5R = D	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance B = \pm .10 pF (<10pF) C = \pm .25 pF (<10pF) D = \pm .50 pF (<10pF) F = \pm 1% (\geq 10 pF) G = \pm 2% (\geq 10 pF) J = \pm 5% K = \pm 10% M = \pm 20%	Failure Rate A = Not Applicable	Terminations G*=1.9 μ" to 7.87 μ" 7 = 100 μ" minimum	Packaging 2 = 7" Reel 4 = 13" Reel U = 4mm TR (01005) Contact Factory For Multiples*	Special Code A = Std. Product

^{*} Contact factory for availability.

AU18 - 0612

PREFERRED SIZES ARE SHADED

SIZE			AU02			AU	103				AU05					Αl	J06		
Solderi	ing		flow/Epo			Reflow, Wire I					flow/Epo						/Epoxy/ Bond*		
Packag	ing		All Pape			All P					er/Embo					Paper/E		d	
(L) Length	mm		.00 ± 0.1			1.60 :	± 0.15			2	2.01 ± 0.2	20				3.20	± 0.20		
,, -	(in.) mm		040 ± 0.0 0.50 ± 0.1			0.063 :					079 ± 0.0 .25 ± 0.2						± 0.008) ± 0.20		
W) Width	(in.)		020 ± 0.0			(0.032 :					0.49 ± 0.0						± 0.20 ± 0.008)		
(t) Terminal	mm		0.25 ± 0.1			0.35 :					0.50 ± 0.2						± 0.25		
	(in.) WVDC	16	010 ± 0.0 25	50	16	(0.014 : 25	± 0.006) 50	100	16	25	020 ± 0.0 50	100	200	16	25	50	± 0.010) 100	200	500
Сар	0.5	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
(pF)	1.0 1.2	C C	C	C	G G	G G	G G	G	J	J	J	J	J	J	J	J	J	J	J
	1.5	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	1.8	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	2.2 2.7	C C	C	C	G G	G G	G G	G	J	J J	J	J	J	J	J	J	J	J	J
	3.3	C	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	3.9	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	4.7 5.6	C C	C	C	G	G G	G	G	J	J	J	J	J	J	J	J	J	J	J
	6.8	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	8.2 10	C	C	C	G G	G G	G	G	J	J	J	J	J	J	J	J	J	J	J
	10	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	15	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	18 22	C C	C	C	G G	G G	G	G	J	J	J	J	J	J	J	J	J	J	J
	27	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	33	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	39 47	C C	C	C	G G	G G	G G	G	J	J	J	J	J	J	J	J	J	J J	J
	56	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	68	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	82 100	C	C	C	G G	G G	G	G	J	J	J	J	J	J	J	J	J	J	J
	120	C	С	С	G	G	G	G	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	ĭ
	150	C	C	C	G G	G G	G	G	J	J	J	J	J	J	J	J	J	J	J
	180 220	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	M
	270	С	С	С	G	G	G	G	J	J	J	J	М	J	J	J	J	J	М
	330 390	C	C	C	G G	G G	G G	G	J	J	J	J	M M	J	J	J	J	J	M M
	470	C	C	C	G	G	G		J	J	J	J	M	J	J	J	J	J	M
	560				G	G	G		J	J	J	J	М	J	J	J	J	J	М
	680 820				G G	G G	G G		J	J J	J	J	M M	J	J	J	J	J M	Р
	1000				G	G	G		J	J	J	J	M	J	J	J	J	Q	
	1200								J	J	J			J	J	J	J	Q	
	1500 1800		 					-	J	J	J			J	J	J M	M	Q	
	2200								J	J	N			J	J	М	Р		
	2700 3300		-						J	J	N			J	J	M	P P		+
	3900								J	J				J	J	M	Р		
	4700								J	J				J	J	M	Р		\sqcup
	5600 6800													J M	J M	М			
	8200													М	М				
	0.010													М	М				
	0.012 0.015		_3	\sim			-W	_											
	0.018		×				7<	4											\Box
	0.022 0.027			_			IJ.	ļΤ											
	0.027		(_		_													+
	0.039				$\dot{\gamma}$	500													
	0.047 0.068				4			_											\vdash
	0.082		i	ı	1 * '	i	i	1											
	0.1	1.			1.	0.5		100	1.	65		100	000	1.5	65		100	000	F00
	WVDC SIZE	16	25 AU02	50	16	25 AU	50 103	100	16	25	50 AU05	100	200	16	25	50 ΔI	100 J06	200	500
	SIZE		AUUZ			AU	.03				AUUS					AL	,00		

^{*} Contact Factory

Letter	Α	С	Е	G	J	K	М	N	Р	Q	X	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	DSSED			

Capacitance Range (NP0 Dielectric)

PREFERRED SIZES ARE SHADED

SIZE				AU10					AU12				AU13			AU14	
Solderin	a			low/Epo					flow/Epo				Reflow/Epoxy	/		Reflow/Epoxy	1/
				/ire Bond					Vire Bon				Wire Bond*			Wire Bond*	
Packagir	_			er/Embo .20 ± 0.2					Emboss .50 ± 0.3				4.50 ± 0.30			All Embossed 5.72 ± 0.25	1
(L) Length	mm (in.)													۸	,		n)
	(in.) mm			26 ± 0.0					177 ± 0.0				(0.177 ± 0.012 6.40 ± 0.40	.)	(0.225 ± 0.010 6.35 ± 0.25	J)
W) Width	(in.)			.30 ± 0.2)98 ± 0.0					.20 ± 0.2				(0.252 ± 0.016	١		0.33 ± 0.23 0.250 ± 0.010	1)
	mm			.50 ± 0.0					.61 ± 0.3				0.61 ± 0.36	<u>'</u>	'	0.64 ± 0.39	2)
(t) Terminal	(in.)			0.00 ± 0.0					0.0 ± 0.0				(0.024 ± 0.014	.)	(0.025 ± 0.015	5)
	WVDC	25	50	100	200	500	25	50	100	200	500	50	100	200	50	100	200
Cap (pF)	0.5 1.0																
(p.)	1.2																
	1.5																
	1.8 2.2																-W-
	2.7														<		J =
	3.3																$\bigcap \mathcal{T}_{\mathbf{I}}$
	3.9 4.7														_		
	5.6															4.0	
	6.8															1	
	8.2 10				<u> </u>	J		-	-								
	10					J											
	15					J											
	18 22					J											
	27					J											
	33					J											
	39					J											
	47 56					J											
	68					J											
	82					J											
	100 120					J											
	150					J											
	180					J											
	220 270					J J											
	330					J											
	390					М											
	470 560	J	J	J	J	M M											
	680	J	J	J	J	M											
	820	J	Ĵ	J	Ĵ	М											
	1000	J	J	J	J	М	K	K	K	K	М	М	M	М	M	M	P
	1200 1500	J	J	J	M M	M M	K K	K	K	K K	M M	M M	M M	M M	M M	M M	P P
	1800	J	J	J	М		K	K	K	K	М	М	М	М	М	М	Р
	2200	J	J	J	Q		K	K	K	K	P	M	M	M	M	M	P P
	2700 3300	J	J	J	Q		K	K	K	P	Q Q	M M	M M	M M	M M	M M	P
	3900	Ĵ	Ĵ	М			K	K	K	P	Q	M	M	M	M	M	P
	4700	J	J	М	<u> </u>		K	K	K	P P	Q X	M	M	M	M	M	P P
	5600 6800	J J	J				K K	K	M M	X	Χ	M M	M M	M M	M M	M M	P
	8200	J	J				K	М	М			М	М		М	М	Р
	0.010	J	J				K	M	М			M	M		M	M	P
	0.012 0.015	J	J				K M	M M				M M	M M		M M	M M	P Y
	0.018						М	М				Р	M		М	М	Y
	0.022						M	M				Р			M	Y	Y
	0.027 0.033				-		M M	M		-		P P			P P	Y	Y
	0.033						M	M				P			P		
	0.047						М	М				P			P		
	0.068						M	M							P		
	0.082 0.1						М	M							Q Q		
	WVDC	25	50	100	200	500	25	50	100	200	500	50	100	200	50	100	200
	SIZE			AU10					AU12				AU13			AU14	

* Contact Factory

111101111000	(0.0.0)	(0.022)	PAPER	(0.000)	(0.007)	(0.0.0)	(0.000)	(0.000)	(OSSED	(0.050)	(0.100)	(0.1.0)
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Letter	Α	С	E	G	J	K	М	N	Р	Q	X	Υ	Z

Capacitance Range (X7R Dielectric)

PREFERRED SIZES ARE SHADED

SIZE			AU	02					AU03	3						AU0	5						Αl	J06			
Soldering	a	R		Ероху	/				ow/E		'						роху	/					eflow				
•			Wire E						ire Bo							ire Bo							Wire				
Packagin	g mm		All P						All Pap 60 ± 0							r/Em 01 ±	boss	ea					per/E 3.20				
(L) Length	(in.)	((£ 0.004	1)				63 ± 0		١						0.20 0.008	3)					.126				
	mm		0.50 ±		')				81 ± 0		<u>' </u>					25 ±		<i>-</i>)					1.60				
W) Width	(in.)	((£ 0.004	1)				32 ± 0)						0.008	3)					.063				
<i>a</i> =	mm		0.25 ±		·/				35 ± 0		<u>' </u>					50 ±		-/					0.50				
(t) Terminal	(in.)	(0		0.006	i)				14 ± 0)						0.010	0)					.020				
WVDC		10	16	25	50	6.3	10	16	25	50	100	200	63	10	16	25	50	100	200	63	10	16	25	50	100	200	500
Сар	100																										
(pF)	150																										
(Pi)	220				С				G																		
	330				С					G	G	G		J	J	J	J	J	J								K
	470				С					G	G	G		J	J	J	J	J	J								K
	680 1000				C		_	_		G	G G	G		J	J	J	J	J	J				-				K
	1500				C					G G	G	G		J	J	J	J	_	J		J	J	J	J		J	M
	2200				C					G	G			J	J	J	J	J	J		J	J	J	J	J	J	M
	3300			С	C					G	G			J	J	J	J	J	J		J	J	J	J	J	J	M
	4700			C	C					G	G			J	J	Ĵ	Ĵ	Ĵ	Ĵ		J	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	М
	6800		С	C						G	G			J	J	Ĵ	Ĵ	Ĵ	Ĵ		J	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	P
	0.010		С					G		G	G			J	J	J	J	J	J		J	J	J	J	J	J	Р
Cap (µF)	0.015		С						G	G				J	J	J	J	J	J		J	J	J	J	J	М	
(με)	0.022	С	С						G	G				J	J	J	J	J	N		J	J	J	J	J	М	
	0.033	С							G	G				J	J	J	J	N			J	J	J	J	J	М	
	0.047							G	G	G				J	J	J	J	N			J	J	J	J	J	М	
	0.068							G	G	G				J	J	J	J	N			J	J	J	J	J	Р	
	0.10						G	G	G	G				J	J	J	J				J	J	J	J	М	Р	
	0.15					G	G							J	J	J	N	N			J	J	J	J	Q		
	0.22					G	G							J	J	N	N	N			J	J	J	J	Q		
	0.33 0.47													N N	N N	N N	N	N N			J M	J M	M M	P P	Q		
	0.47													N	N	N N	IN	IN			M	M	Q	Q	Q Q		
	1.0													N	N	N		<u> </u>	 		M	M	Q	0	Q		
	1.5														.,						P	Q	Q	٧	٧		
	2.2															P*					Q	Q	Q				
	3.3																										
	4.7													P*							Q	Q					
	10														L	<u> </u>	<u> </u>				Q*						
	22																			Q*							
	47																										
	100																										
	WVDC	10	16	25	50	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	63	10	16	25	50	100	200	500
	SIZE			AU02					AU03	3						AU0	5						Al	J06			

^{*} Contact Factory

	Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
	Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
1	Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
				PAPER						FMRC	SSFD			

021220

Capacitance Range (X7R Dielectric)

PREFERRED SIZES ARE SHADED

SIZE					AU10						112			J13		J14
Soldering	a				flow/Epo						/Epoxy/			/Epoxy/		/Epoxy/
Packagin					Vire Bond er/Embos						Bond* bossed			Bond* bossed		Bond* bossed
	y mm				3.20 ± 0.2					4.50 :				± 0.30		± 0.25
(L) Length	(in.)				126 ± 0.2						± 0.012)			± 0.012)		± 0.23
140 140 141	mm				2.50 ± 0.2						± 0.20			± 0.40		± 0.25
W) Width	(in.)			(0.	098 ± 0.0	08)				(0.126 :	± 0.008)		(0.252	± 0.016)		± 0.010)
(t) Terminal	mm			. (0.50 ± 0.2	5				0.61 :	± 0.36		0.61	± 0.36	0.64	± 0.39
* /	(in.)				020 ± 0.0						± 0.014)			± 0.014)		± 0.015)
WVDC		10	16	25	50	100	200	500	50	100	200	500	50	100	50	100
Сар	100															
(pF)	150															
(1- /	220												0.00			
	330											1		$\overline{}$	-W	
	470										-				\sim	_
	680												$\overline{}$		1)	Îт —
	1000													_ (ノノ -	•
	1500	J	J	J	J	J	J	M					\sim $^{\prime}$			
	2200 3300	J	J	J	J	J	J	M M					Ĭ.			
													t	1		
	4700	J	J	J	J	J	J	M M				I	1	î	I	
	6800 0.010	J	J	J	J	J	J	M	K	K	K	K	M	M	М	Р
Сар	0.010	J	J	J	J	J	J	P IVI	K	K	K	P	M	M	M	P
(μF)	0.013	J	J	J	J	J	J	Q	K	K	K	P	M	M	M	P
	0.022	J	J	J	J	J	J	0	K	K	K	X	M	M	M	P
	0.047	J	J	J	J	J	J	Q	K	K	K	z	M	M	M	P .
	0.068	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	M		K	K	K	Z	M	M	M	Р
	0.10	J	J	J	J	J	М		K	K	K	Z	М	М	М	P
	0.15	J	J	J	J	М	Z		К	К	Р		М	М	М	Р
	0.22	J	J	J	J	Р	Z		K	K	Р		М	М	М	Р
	0.33	J	J	J	J	Q			K	М	Х		М	М	М	Р
	0.47	М	М	M	М	Q			K	Р			М	M	M	P
	0.68	M	M	Р	X	X			M	Q			M	P	M	P
	1.0	N N	N N	Z	X Z	Z Z			M Z	X Z			M M	۲	M M	P X
	1.5 2.2	X	X	Z	Z	Z			Z	Z			IVI		M	^
	3.3	X	X	Z	Z				Z				+	 	IVI	
	4.7	X	X	Z	Z				Z							
	10	Z	Z	Z												
	22															
	47															
	100															
	WVDC	10	16	25	50	100	200	500	50	100	200	500	50	100	50	100
	SIZE				AU10					AU	12		AU	J13	AL	J14

^{*} Contact Factory

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	DSSED			

Capacitance Range (X5R Dielectric)

PREFERRED SIZES ARE SHADED

SIZE				AL	102					-	AU03	3					ΑL	105						J06					-	AU1	0				Α	U12	
Solderin	ng			flow /ire							ow/E e Bo		y			Re V	flow /ire	/Epc Bonc	oxy ł*			Re V	eflow Vire	/Epo	oxy ł*			F		ow/E e Bo		y				w/Ep e Bor	oxy/ nd*
Packagi	ing			All P	ape	r				Al	l Pap	oer				Pape	er/Ei	mbo	ssec	1		Pap	er/E	mbo	ssec	1		Pa	per/	/Eml	ooss	ed		Α	All Er	nbos	ssed
(L) Length	mm (in.)			1.00 : 040 :						(0.06	60 ± 0 63 ± 0	.006))					± 0.20 ± 0.00						± 0.20					(0.12	20 ± 0 26 ± 0	.008)		(0 ± 0. 7 ± 0.	
(W) Width	mm (in.)		(0.	0.50 : 020 :	± 0.0	04)				(0.03	31 ± 0 32 ± 0	.006))			(0.	049 :	± 0.20	08)			(0.	.063	± 0.20	08)				(0.09	60 ± 0	.008)		(0.126	0 ± 0. 6 ± 0.	(800
(t) Terminal	mm (in.)			0.25 : 010 :							35 ± 0 4 ± 0)					± 0.25 ± 0.01						± 0.2						50 ± 0 20 ± 0)				1 ± 0. 4 ± 0.	
WVDC	. ,	4		10			50	4	6.3	10		25		50	6.3	10		25		50	6.3	10	16	25	35	50	4	6.3		16			50	6.3		25	50
Сар	100																																				
(pF)	150								İ																												
	220								İ		İ											İ		İ		İ						İ					
	330						С																														
	470						С																														
	680						С																														
	1000						С																														
	1500						С																														
	2200						С				-													-							-						
	3300 4700					С	С							G																							
	6800					C								G																							
Сар	0.010					С								G																							
(μF)	0.015					C						G	G	G																							
()	0.022				С	С						G	G	G						N																	
	0.033				С							G	G	G						N																	
	0.047				С	С						G	G	G						N																	
	0.068				С							G		G						N																	
	0.10		С		С	С						G		G				N		N																	
	0.15											G						N	N																		
	0.22		C*								G	G						N	N																		
	0.33										G	G						N								Q											
	0.47	C*									G							N						Q	Q												
	0.68				_			-	_	_	G	J.L.						N		Di				_	_								X				
	1.0								G	G	G	J*			N		N	N		P*				Q	Q						Х	Х	Х				
	1.5 2.2	C*						G*	G*	J*	J*				N N	N	N	N					Q	Q							Z	X					
	3.3	U"			\vdash			J*	J*	J*	J*	\vdash			N	N	IN	IN			Q	Q	Ų	Ų								^					
	4.7							J*	J*] J*					14	N	N*	N*			Q	Q	Q	Q						Q	Z						
	10							K*							P*	P*	P*				Q	Q	Q	Q*					Х	Z	Z					Z	
	22														P*						Q*	Q*	Q*	Ì				Z	Z	Z	Z						
	47																				Q*							Z*									
	100																										Z*	_ Z*									
	WVDC	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	6.3	10	16	25	35	50	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	6.3	10	25	50
	SIZE			ΑL	102			4 6.3 10 16 25 35 50 6.3 AU03					ΑL	105					Αl	J06						AU1	0				Δ	U12					

^{*} Contact Factory

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

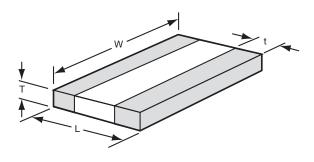
= *Optional Specifications - Contact Factory

NOTE: Contact factory for non-specified capacitance values

AU16/AU17/AU18

	IZE		(AU1 030	5)			(0	U17	3)			(AU1 061:	2)	
Pack	caging			nboss					boss					nboss		
Length	mm (in.)			31 ± 0 32 ± 0)		1.2 0.05(7 ± 0. 0 ± 0.					0 ± 0	1.25 1.010)	
Width	mm (in.)			50 ± 0 53 ± 0)	(2.0	0 ± 0. 0 ± 0.					20 ± 0 26 ± 0	.25 .010)	
Cap Code	WVDC	4	6.3	10	16	25	6.3	10	16	25	50	6.3	10	16	25	50
102	Cap 0.001		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
222	(μF) .0022		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
332	0.0033		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
472	0.0047		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
682	0.0068		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
103	0.01		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
153	0.015		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
223	0.022		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
333	0.033		Α	Α	Α		S	S	S	٧	٧	S	S	S	S	W
473	0.047		Α	Α	Α		S	S	S	٧	Α	S	S	S	S	W
683	0.068		Α	Α	Α		S	S	S	Α	Α	S	S	S	٧	W
104	0.1		Α	Α	/		S	S	٧	Α	Α	S	S	S	٧	W
154	0.15		Α	Α			S	S	٧			S	S	S	W	W
224	0.22		Α	Α			S	S	Α			S	S	٧	W	
334	0.33						٧	٧	Α			S	S	٧		
474	0.47						٧	٧	M			S	S	٧		
684	0.68						Α	Α				٧	٧	W		
105	1	A					Α	Α				٧	٧	Α		
155	1.5						M					W	W			
225	2.2											Α	Α			
335	3.3											1				
475	4.7															
685	6.8															
106	10															

Solid = X7R


mm (in.) AU16 (0306)Code Thickness

0.56 (0.022)

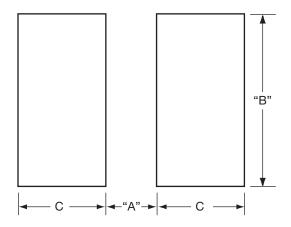
	mm (in.)
	AU16 (0508)
Code	Thickness
S	0.56 (0.022)
V	0.76 (0.030)
Α	1.02 (0.040)

	mm (in.)
	AU16 (0612)
Code	Thickness
S	0.56 (0.022)
V	0.76 (0.030)
W	1.02 (0.040)
Α	1.27 (0.050)

PHYSICAL DIMENSIONS AND **PAD LAYOUT**

PHYSICAL DIMENSIONS

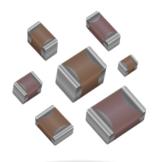
MM (IN.)


	L	W	t
AU16	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
(0306)	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)
AU17	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
(0508)	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)
AU18	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
(0612)	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)

T - See Range Chart for Thickness and Codes

PAD LAYOUT DIMENSIONS

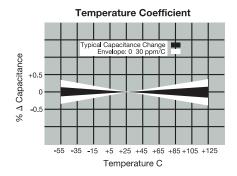
MM (IN.)

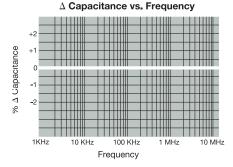

	Α	В	С
AU16 (0306)	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)
AU17 (0508)	0.51 (0.020)	2.03 (0.080)	0.51 (0.020)
AU18 (0612)	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)

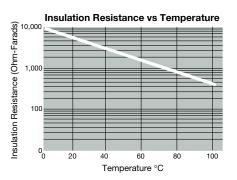
MLCC Tin/Lead Termination "B" (LD Series)

KYOCERA AVX will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the KYOCERA AVX Catalog Part Number. This fulfills KYOCERA AVX's commitment to providing a full range of products to our customers. KYOCERA AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

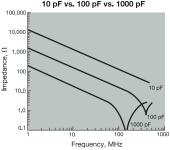
PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

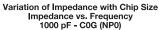

Not RoHS Compliant

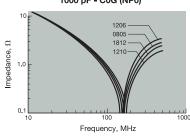

LD05	5	A	101	Ţ	<u>A</u>	В	2	Α
Size LD02 - 0402 LD03 - 0603 LD04 - 0504* LD05 - 0805 LD06 - 1206 LD10 - 1210 LD12 - 1812 LD13 - 1825 LD14 - 2225	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2	Dielectric COG (NPO) = A X7R = C X5R = D X8R = F	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance B = ±.10 pF (<10pF) C = ±.25 pF (<10pF) D = ±.50 pF (<10pF) F = ±1% (≥ 10 pF) G = ±2% (≥ 10 pF) J = ±5% K = ±10%	Failure Rate A = Not Applicable 4 = Automotive	Terminations B = 5% min lead X = FLEXITERM® with 5% min lead** **X7R only	Packaging 2 = 7" Reel 4 = 13" Reel Contact Factory For Multiples*	Special Code A = Std.
LD20 - 2220	500V = 7			M = ±20%				

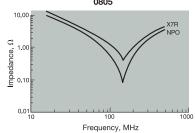

*LD04 has the same CV ranges as LD03.

See FLEXITERM® section for CV options


NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.





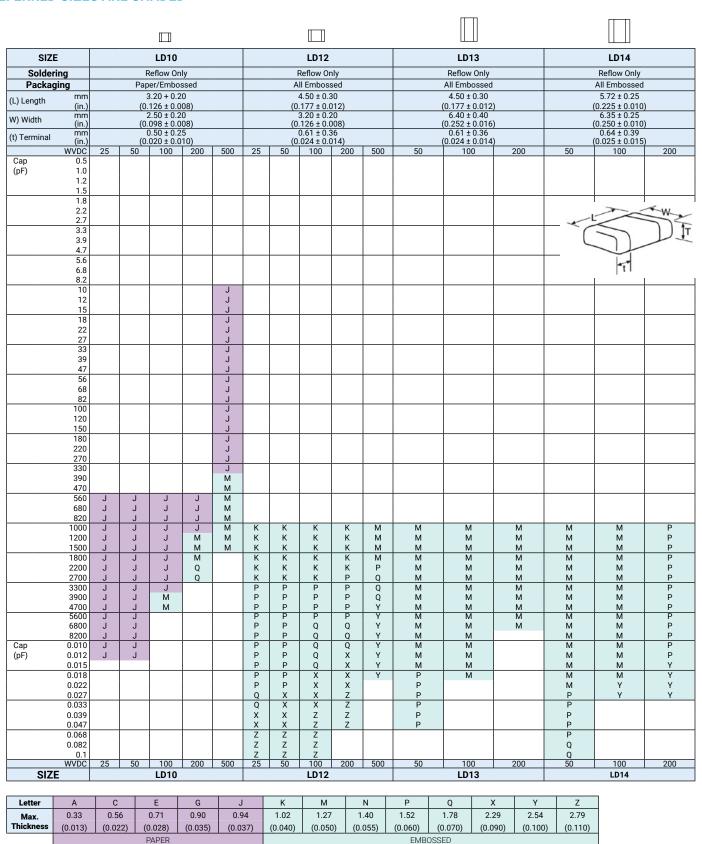


Variation of Impedance with Ceramic Formulation Impedance vs. Frequency 1000 pF - C0G (NP0) vs X7R

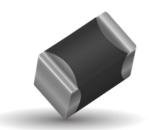
Parame	ter/Test	NP0 Specification Limits	Measuring	Conditions
	perature Range	-55°C to +125°C	Temperature C	ycle Chamber
Capac	itance	Within specified tolerance	Freg.: 1.0 MHz ± 109	% for cap ≤ 1000 pF
C	2	<30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	1.0 kHz ± 10% fo Voltage: 1.0	
Insulation	Resistance	100,000ΜΩ or 1000ΜΩ - μF, whichever is less	Charge device with 60 ± 5 secs @ roo	
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current 0 mA (max) h 150% of rated voltage
	Appearance	No defects	Deflection	n: 2mm
Resistance to Flexure	Capacitance Variation	±5% or ±.5 pF, whichever is greater	Test Time: 3	30 seconds 7 1mm/sec
Stresses	Q	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 1	
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Die desire is establis	
Resistance to Solder Heat	Q	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
Soluei Fleat	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 hours at roo	
	Appearance	No visual defects		
	Capacitance Variation	≤ ±3.0% or ± .3 pF, whichever is greater	Charge device with twice chamber set a	
Load Life	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	for 1000 hou	ırs (+48, -0).
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	temperature before me	for 24 hours
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects		
	Capacitance Variation	≤ ±5.0% or ± .5 pF, whichever is greater	Store in a test chamber s	set at 85°C ± 2°C/ 85% ±
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	5% relative humidi (+48, -0) with rated	d voltage applied.
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature for 24 ± 2 h	
	Dielectric Strength	Meets Initial Values (As Above)		

PREFERRED SIZES ARE SHADED

			-]		
SIZE			LD02				03				LD05					LD0	6		
Solder			flow/Wa				//Wave				flow/Wav					Reflow/\			
Packag			All Paper				aper				er/Embos				P	aper/Em			
(L) Length	mm		.00 ± 0.1 040 ± 0.0				± 0.15 ± 0.006)				.01 ± 0.20					3.20 ± (
	(in.) mm		.50 ± 0.0				± 0.006) ± 0.15				$.25 \pm 0.00$			(0.126 ± 0.008) 1.60 ± 0.20					
W) Width	(in.)		020 ± 0.0				± 0.006)				0.20 ± 0.20				((0.063 ± (
(t) Terminal	mm		.25 ± 0.1				± 0.15				.50 ± 0.2					0.50 ± 0			
(t) Terrimai	(in.)		010 ± 0.0				± 0.006)				20 ± 0.0°					(0.020 ± 0)			
0-11	WVDC	16	25	50	16	25	50	100	16	25	50	100	200	16	25	50	100	200	500
Cap (pF)	0.5 1.0	C	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
(Pi)	1.2	C	Č	Č	Ğ	Ğ	Ğ	G	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	J	Ĵ	Ĵ	Ĵ
	1.5	С	С	С	G	G	G	G	J	J	Ĵ	J	J	J	J	Ĵ	J	J	J
	1.8	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	2.2	C	С	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	2.7 3.3	C	C	C	G G	G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	3.9	C	Č	c	Ğ	Ğ	Ğ	G	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	J	Ĵ	Ĵ	Ĵ
	4.7	С	С	С	G	G	G	G	Ĵ	J	Ĵ	J	J	J	Ĵ	Ĵ	J	Ĵ	Ĵ
	5.6	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	6.8	C	C	C	G	G	G G	G	J	J	J	J	J	J	J	J	J	J	J
	8.2 10	C	C	C	G G	G	G	G G	J	J	J	J	J	J	J	J	J	J	J
	12	C	Č	Č	Ğ	G	Ğ	Ğ	J	Ĵ	Ĵ	Ĵ	J	J	J	J	J	Ĵ	J
	15	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	18	С	С	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	22 27	C C	C	C	G G	G G	G G	G G	J J	J	J	J	J	J	J	J	J	J	J
	33	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	39	С	c	C	G	G	G	G	Ĵ	J	Ĵ	Ĵ	Ĵ	Ĵ	J	Ĵ	J	Ĵ	Ĵ
	47	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	56 68	C C	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	82	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	100	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	120	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	150	C	C	C	G G	G	G	G G	J	J	J	J	J	J	J	J	J	J	J
	180 220	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J M
	270	Č	c	c	Ğ	Ğ	Ğ	Ğ	Ĵ	Ĵ	Ĵ	Ĵ	М	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	м
	330	С	С	С	G	G	G	G	J	J	J	J	М	J	J	J	J	J	М
	390	C	С	С	G	G	G	G	J	J	J	J	М	J	J	J	J	J	M
-	470 560	С	С	С	G G	G	G G		J	J	J	J	M M	J	J	J	J	J	M M
	680				G	G	Ğ		J	Ĵ	J	J	101	J	J	J	J	J	P
	820				G	G	G		J	J	J	J		J	J	J	J	М	
	1000				G	G	G		J	J	J	J		J	J	J	J	Q	
	1200 1500					G			J	J	J			J	J	J	J M	Q	
	1800					 			J	J	J			J	J	M	M	Ų	$\vdash\vdash$
	2200								Ĵ	Ĵ	Ň			Ĵ	Ĵ	M	P		
	2700								J	J	N			J	J	M	P		oxdot
	3300 3900								J	J				J	J	M M	P P		
	4700								J	J				J	J	M	P		
	5600													J	J	M			М
	6800													М	М				
Com	8200					-								M	M				\vdash
Cap (pF)	0.010 0.012													М	M				
(P')	0.012			-		×	1												
	0.018			-1			_												
	0.022		~))	ÎT												
	0.027		+ ()] _		_		-					-	-	1			\vdash
	0.033					100													
	0.047		L		4				<u></u>			<u></u>			<u></u>	<u></u>	L	L	L I
	0.068		Γ	ı		1	. –												
	0.082																		
	0.1 WVDC	16	25	50	16	25	50	100	16	25	50	100	200	16	25	50	100	200	500
	SIZE	10	LD02	1 30	10		03	100	10	_ W	LD05	100	200	10	, W	LD0		200	
	O.Z.L																		


Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMB	OSSED			

COG (NPO) - Capacitance Range


PREFERRED SIZES ARE SHADED

X8R - General Specifications

KYOCERA AVX will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the KYOCERA AVX Catalog Part Number. This fulfills KYOCERA AVX's commitment to providing a full range of products to our customers. KYOCERA AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

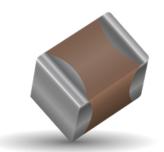
LD05	<u>5</u>	F T	101		<u>A</u>	<u>B</u>	2	<u>A</u>
Size LD02 - 0402 LD03 - 0603 LD04 - 0504* LD05 - 0805 LD06 - 1206 LD10 - 1210 LD12 - 1812 LD13 - 1825 LD14 - 2225 LD20 - 2220	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric X8R = F	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance B = ±.10 pF (<10pF) C = ±.25 pF (<10pF) D = ±.50 pF (<10pF) F = ±1% (≥ 10 pF) G = ±2% (≥ 10 pF) J = ±5% K = ±10% M = ±20%	Failure Rate A = Not Applicable	Terminations B = 5% min lead X = FLEXITERM® with 5% min lead** **X7R only	Packaging 2 = 7" Reel 4 = 13" Reel Contact Factory For Multiples*	Special Code A = Std. Product

LD04 has the same CV ranges as LD03.

See FLEXITERM® section for CV options

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

Parame	ter/Test	X8R Specification Limits	Measuring	Conditions	
Operating Tem	perature Range	-55°C to +150°C	Temperature C	ycle Chamber	
Capac	itance	Within specified tolerance	Frog : 1 0 k	√U¬ ± 100/	
Dissipati	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 3.5% for 25V DC and 16V DC rating	Freq.: 1.0 k Voltage: 1.0		
Insulation	Resistance	100,000ΜΩ or 1000ΜΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo		
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device witl for 500V	and discharge current mA (max) h 150% of rated voltage	
	Appearance	No defects	Deflectio	n: 2mm	
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3		
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)			
	Insulation Resistance	≥ Initial Value x 0.3	90 r	mm	
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.		
	Appearance	No defects, <25% leaching of either end terminal			
	Capacitance Variation	≤ ±7.5%			
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± hours before measuring electrical properties		
	Insulation Resistance	Meets Initial Values (As Above)	nours before measuring	g electrical properties.	
	Dielectric Strength	Meets Initial Values (As Above)			
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes	
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes	
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes	
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes	
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	and measure after oom temperature	
	Appearance	No visual defects			
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r		
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou		
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h		
	Dielectric Strength	Meets Initial Values (As Above)			
	Appearance	No visual defects			
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi		
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	d voltage applied.	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an 24 ± 2 hours bef	d humidity for	
	Dielectric Strength	Meets Initial Values (As Above)	Z-7 ± 2 Hours ber	ore measuring.	


X8R - Capacitance Range

	SIZE	LD	03	LD	05	LD	06
	WVDC	25V	50V	25V	50V	25V	50V
271	Cap 270	G	G				
331	(pF) 330	G	G	J	J		
471	470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
182	1800	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
272	2700	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
392	3900	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
562	5600	G	G	J	J	J	J
682	6800	G	G	J	J	J	J
822	Cap 8200	G	G	J	J	J	J
103	(μF) 0.01	G	G	J	J	J	J
123	0.012	G	G	J	J	J	J
153	0.015	G	G	J	J	J	J
183	0.018	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
273	0.027	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
393	0.039	G	G	J	J	J	J
473	0.047	G	G	J	J	J	J
563	0.056	G		N	N	М	M
683	0.068	G		N	N	М	M
823	0.082			N	N	М	М
104	0.1			N	N	М	M
124	0.12			N	N	М	M
154	0.15			N	N	М	М
184	0.18			N		М	М
224	0.22			N		М	М
274	0.27					М	М
334	0.33					М	М
394	0.39					М	
474	0.47					М	
684	0.68						
824	0.82						
105	1						
	WVDC	25V	50V	25V	50V	25V	50V
	SIZE	LD	03	LD	05	LD	06

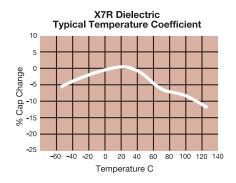
Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

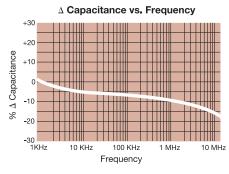
X7R - General Specifications

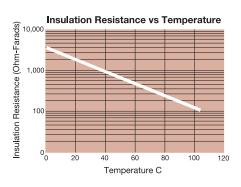
KYOCERA AVX will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the KYOCERA AVX Catalog Part Number. This fulfills KYOCERA AVX's commitment to providing a full range of products to our customers. KYOCERA AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)


LD05	5	<u>c</u>	101	J	<u>A</u>	<u>B</u>	2	<u>A</u>
Size LD03 - 0603 LD04 - 0504* LD05 - 0805 LD06 - 1206 LD10 - 1210 LD12 - 1812 LD13 - 1825	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5	Dielectric X7R = C	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance B = ±.10 pF (<10pF) C = ±.25 pF (<10pF) D = ±.50 pF (<10pF) F = ±1% (≥ 10 pF) G = ±2% (≥ 10 pF) J = ±5%	Failure Rate A = Not Applicable	Terminations B = 5% min lead X = FLEXITERM® with 5% min lead** **X7R only	Packaging 2 = 7" Reel 4 = 13" Reel Contact Factory For Multiples*	Special Code A = Std. Product
LD14 - 2225 LD20 - 2220	200V = 2 500V = 7			K = ±10% M = ±20%				


^{*}LD04 has the same CV ranges as LD03.


See FLEXITERM® section for CV options

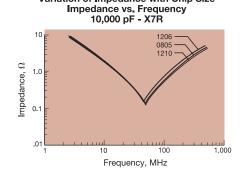
NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

Contact factory for non-specified capacitance values.

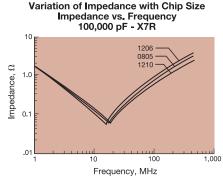
0805

10.00 pF

10.000 pF


10.000 pF

10.000 pF

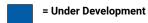

Frequency, MHz

Variation of Impedance with Cap Value

Impedance vs. Frequency 1,000 pF vs. 10,000 pF - X7R

Variation of Impedance with Chip Size

Parame	ter/Test	X7R Specification Limits	Measuring (Conditions
Operating Tem	perature Range	-55°C to +125°C	Temperature C	ycle Chamber
Capac	itance	Within specified tolerance		
Dissipati	on Factor	≤ 10% for ≥ 50V DC rating ≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating	Freq.: 1.0 k Voltage: 1.0'	
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo	
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current mA (max) n 150% of rated voltage
	Appearance	No defects	Deflectio	n: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	l v	
	Insulation Resistance	≥ Initial Value x 0.3	90 r	nm —
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.5	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Capacitance Variation Dissipation Factor Insulation Resistance rability Appearance Capacitance Variation Dissipation Factor Insulation	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
		≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock		Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
		Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
		Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
		No visual defects		
	Variation	≤ ±12.5%	Charge device with 1.5 r	
Load Life	Appearance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Dissipation	≤ Initial Value x 2.0 (See Above)	for 1000 hou	
		≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h	
		Meets Initial Values (As Above)		
	Appearance	No visual defects		
		≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load Humidity	Capacitance Variation Dissipation Factor Insulation Resistance Dissipation Factor Appearance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	l voltage applied.
Humbulty		≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an	d humidity for
		Meets Initial Values (As Above)	24 ± 2 hours bef	ore measuring.

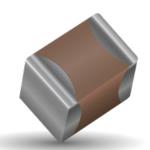


PREFERRED SIZES ARE SHADED

								ш							ш											
SIZE			LD02					LD03							LD05							LD				
Solderi			low/W					low/W							low/W							Reflow				
Packag			II Pap					II Pap							r/Emb						Pa	per/Er		ed		
(L) Length	mm (in.)		00 ± 0 40 ± 0					60 ± 0 63 ± 0							01 ± 0. 79 ± 0.						(3.20 ± ± 0.126		0)		
	mm		10 ± 0 50 ± 0					81 ± 0							25 ± 0.							1.60 ±		0)		
W) Width	(in.)		20 ± 0					32 ± 0							49 ± 0.						(0.063		B)		
(t) Terminal	mm	0.2	25 ± 0	.15			0.3	35 ± 0	.15						50 ± 0.							0.50 ±				
()	(in.)	_	10 ± 0					14 ± 0							20 ± 0.						$\overline{}$	0.020 ±				
WVD		16	25	50	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	500
Сар	100																									
(pF)	150																									
	220			С																						
	330			С					G	G	G		J	J	J	J	J	J								K
	470			С					G	G	G		J	J	J	J	J	J								K
	680			С					G	G	G		J	J	J	J	J	J								K
	1000			С					G	G	G		J	J	J	J	J	J								K
	1500			С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	M
	2200		_	С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	M
	3300		С	C					G	G			J	J	J	J	J	J		J	J	J	J	J	J	M
	4700 6800	^	С	С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	M P
Con	0.010	C	C	-					G	G			J	J	J	J	J	J		J	J	J	J	J	J	P
Cap (µF)	0.010	C	C	1				G	G	G			J	J	J	J J	J	J		J	J	J	J	J J	M	Р
(με)	0.013	C						G	G				J	J	J	J	J	J		J	J	J	J	J	M	
	0.022	С						G	G				J	J	J	J	N	IN		J	J	J	J	J	M	
	0.033	C					G	G	G				J	J	J	J	N			J	J	J	J	J	M	
	0.068						G	G	G				J.J	J	J	Ĵ	N			J	Ĵ	Ĵ	Ĵ	Ĵ	P	
	0.10		C*			G	G	G	G				J	J	J	J	N			J	J	J	J	P	P	
	0.15			1	G	G							Ĵ	Ĵ	Ĵ	N	N			J	Ĵ	Ĵ	Ĵ	Q	·	
	0.22				G	G							Ĵ	Ĵ	N	N	N			J	Ĵ	Ĵ	Ĵ	Q		
	0.33				_	-							N	N	N	N	N			J	J	М	P	Q		
	0.47							J*					N	N	N	N	N			М	М	М	Р	Q		
	0.68												N	N	N					М	М	Q	Q	Q		
	1.0					J*	J*						N	N	N*					М	М	Q	Q	Q		
	1.5																			Р	Q	Q				
	2.2				J*									L	P*					Q	Q	Q				
	3.3																									
	4.7												P*	P*						Q*	Q*	Q*				
	10											P*	Р							Q*	Q*	Q				
	22																		Q*							
	47																									
	100																									
	WVDC	16	25	50	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	500
	SIZE		LD02					LD03							LD05							LD	06			

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

PREFERRED SIZES ARE SHADED


SIZE					LD10					LD	12		LC	013		LD	20		LD	14
Solderin	ng			R	eflow On	ly				Reflov				w Only		Reflov				w Only
Packagi	ng				er/Embo					All Emb				bossed		All Eml				bossed
(L) Length	mm				.20 + 0.2					4.50 ±				± 0.30			± 0.50			± 0.25
(L) Length	(in.)				26 ± 0.0					(0.177 ±				± 0.012)		(0.224 :				± 0.010)
W) Width	mm				.50 ± 0.2					3.20 ±				± 0.40			± 0.40			± 0.25
	(in.)				98 ± 0.0					(0.126 ±				± 0.016)		(0.197 :			(0.250	
(t) Terminal	mm				.50 ± 0.2					0.61 ±				± 0.36			± 0.39			± 0.39
WVDC	(in.)	10	16	25	20 ± 0.0 50	10)	200	500	50	(0.024 ±	200	500	50	± 0.014)	25	50	± 0.015) 100	200	(0.025 :	100
	100	10	16	25	50	100	200	500	50	100	200	500	50	100	25	50	100	200	50	100
Cap (pF)	150																			
(pr)	220																		<u> </u>	
	330															<u> </u>	-[\sim	W	
	470)) [
	680																$\overline{}$	1_)	~
	1000															Γ				
	1500	J	J	J	J	J	J	М										4 ₹		
	2200	J	J	J	J	J	J	М												
	3300	J	J	J	J	J	J	М												
	4700	J	J	J	J	J	J	М												
	6800	J	J	J	J	J	J	М												_
Cap	0.010	J	J	J	J	J	J	М	K	K	K	K	M	М		X	X	X	M	P
(μF)	0.015	J	J	J	J	J	J	Р	K	K	K	Р	M	M		X	X	X	M	P
	0.022	J J	J	J	J	J	J	Q O	K	K	K	P X	M	M M		X	X	X	M M	P
	0.033		J	-	-	-	J	Ų	K	K		Z	M	M		X	X	X		P
	0.047	J J	J	J	J J	J	J M		K K	K	K K	Z	M	M		X	X	X	M M	P
	0.10		J	J	J	J	M		K	K	K	Z	M	M		X	X	X	M	P
	0.15	J	J	J	J	M	Z		K	K	P		M	M		x	l x	x	M	P
	0.22	J	Ĵ	Ĵ	Ĵ	P	Z		ĸ	K	P.		M	M		x	x	X	M	Р
	0.33	J	J	J	J	Q			K	М	Х		М	М		X	X	X	М	P
	0.47	М	М	М	М	Q			К	Р			М	М		Х	Х	Х	М	Р
	0.68	M	М	Р	Х	Х			М	Q			М	Р		Х	X		М	Р
	1.0	N	N	Р	Х	Z			М	Х			М	Р		Х	Х		М	Р
	1.5	N	N	Z	Z	Z			Z	Z			М			X	X		М	X
	2.2	Χ	Х	Z	Z	Z			Z	Z						Х	Х		М	
	3.3	Х	Х	Z	Z				Z	_						X	Z			
	4.7	X	X	Z	Z				Z	Z						X	Z			
	10	<u>Z</u>	Z	Z	Z								-		7	Z	Z		-	\vdash
	22 47	Z Z	Z												Z					
	100	2																		
	WVDC	10	16	25	50	100	200	500	50	100	200	500	50	100	25	50	100	200	50	100
SIZE	11100	10	10		LD10	100	200	300	30	LD		300		013	20	LD		_ 200		014
CIZE																	_,			• •

Letter	Α	С	E	G	J	K	М	N	Р	Q	Χ	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

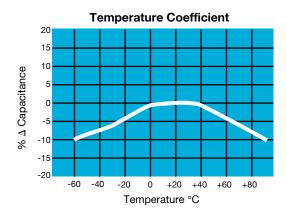
081021

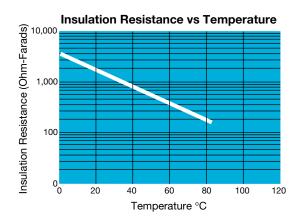
X5R - General Specifications

KYOCERA AVX will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the KYOCERA AVX Catalog Part Number. This fulfills KYOCERA AVX's commitment to providing a full range of products to our customers. KYOCERA AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)


LD05	<u>5</u>	D T	101	J	<u>A</u>	<u>B</u>	<u>2</u>	<u>A</u>
Size LD02 - 0402 LD03 - 0603 LD04 - 0504* LD05 - 0805 LD06 - 1206 LD10 - 1210 LD12 - 1812 LD13 - 1825 LD14 - 2225 LD20 - 2220	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric X5R = D	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance B = ±.10 pF (<10pF) C = ±.25 pF (<10pF) D = ±.50 pF (<10pF) F = ±1% (≥ 10 pF) G = ±2% (≥ 10 pF) J = ±5% K = ±10% M = ±20%	Failure Rate A = Not Applicable	Terminations B = 5% min lead X = FLEXITERM® with 5% min lead** **X7R only	Packaging 2 = 7" Reel 4 = 13" Reel Contact Factory For Multiples*	Special Code A = Std. Product


^{*}LD04 has the same CV ranges as LD03.

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

See FLEXITERM® section for CV options

TYPICAL ELECTRICAL CHARACTERISTICS

Parame	ter/Test	X5R Specification Limits	Measuring (Conditions
Operating Tem	perature Range	-55°C to +85°C	Temperature C	ycle Chamber
Capac	itance	Within specified tolerance		
Dissipati	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 3.0% for 25V, 35V DC rating ≤ 12.5% Max. for 16V DC rating and lower Contact Factory for DF by PN	Freq.: 1.0 k Voltage: 1.0 For Cap > 10 µF, 0	Vrms ± .2V
Insulation	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50	and discharge current
	Appearance	No defects	Deflectio	n: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	The state of the s	
	Insulation Resistance	≥ Initial Value x 0.3	90 r	
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.9	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	Appearance	No visual defects	0 1	v . I li
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 chamber set at 85°C: (+48, -0). Note: Contac	± 2°C for 1000 hours
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	specification part numl	pers that are tested at
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb	
	Dielectric Strength	Meets Initial Values (As Above)	temperature for 24 ± 2 h	ours betore measuring.
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	voltage applied.
,	Appearance Capacitance Variation Es Dissipation Factor Insulation Resistance Solderability Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an 24 ± 2 hours bef	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 Hours ber	o.c.medodinig.

112916

PREFERRED SIZES ARE SHADED

											=						п	1					П														
SIZ	E			L	D02						.D0	3					LD	05					LD	06						.D10)				LD'	12	
Solder	ring		R	eflo	w/W	ave			ı	Reflo	w/\	Vave	9			Re	flow	/Wa	ve			Re	eflow	/Wa	ve				Refle	w/W	/ave						
Packa	ging				Pap						Pa				Р	ape				d	Р		r/Er			d		Pa		Emb		ed					
(L) Length	mm				± 0.					1.60							.01 ±						.20 ±					,		0 ± 0							
	(in.) mm				± 0.	004) 10				0.8			6)				79 ±						126 ±					(6 ± 0 0 ± 0)				_	_
W) Width	(in.)		(0.	.020	± 0.	004)			(0	.032	2 ± (0.00	6)			(0.0)49 ±	0.0	(80			(0.	063 ±	0.0	(80			(0.09	8 ± 0	.008)					
(t) Terminal	mm (in.)				± 0.	15 006)				0.3			د)				.50 ±						0.50 ±					,		0 ± 0 0 ± 0		`					
WVD		4	6.3	110	16	1 25	50	4	6.3	10	116	125	(35	50	6.3	10.0	16	25	10) 135	50	6.3	10.	16	25	35	50	4	6.3	10	16	25) 135	50	6.3	101	25	50
Сар	100																																				
(pF)	150		İ			İ		İ											İ													İ			İ		
	220						С												j													j					
	330						С																								/	1		[≰∵		I	
	470						С																							-[_]		\sim	\leq	₹ -V	∨ ≥	_	
	680						С												_								_		<u>`</u> (<	_)) 7	T	
	1000						С																						(_	\mathcal{I})	_	_		_	
	1500 2200						C																							_	<u> </u>	1					
-	3300		┢			-	C	\vdash				\vdash															_				1	t					
	4700					С								G																		i i		i		i	
	6800					С								G																							
Сар	0.010					C						\vdash		G																					\vdash		_
(μF)	0.015					С						G	G	G																							
	0.022		İ		С	С		İ				G	G	G						Ν																	
	0.033				С							G	G	G						N																Ì	
	0.047				С	С						G	G	G						N																	
	0.068				С							G		G						N															Щ		
	0.10			С	С	С						G		G				N		N																	
	0.15											G						N	N																		
	0.22		C*	⊢							G	G						N	N							Q						-			\vdash		_
	0.33	C*	C*								G	6	1					N						Q	Q								Х				
	0.68										G							N						Q	Q								^				
	1.0	C*	C*	C*				H	G	G	G	J*					N	N	Н	P*				Q	Q			Н	_		Х	X	Х		H		_
	1.5				1								1							•				٩	٦						,,	,,	,				
	2.2	C*	ĺ					G*	G*	J*	J*					N	N	N	ı				Q	Q	l						Z	Х					
	3.3							J*	J*	J*	J*				N	N					Х	Х													\Box		
	4.7							J*	J*	J*					N	N	N*	N*			х	х	Х	Х						Q	Z						
	10		$oxed{oxed}$				_	K*							Р	Р	Р				Х	Х	Х	Х					Χ	Z	Z	L			Ш	Z	
	22														P*						Х	Х	Х	Х				Z	Z	Z	Z					1	
	47																				Х						7+	Z*									
	100 WVDC	1	6.2	10	16	25	50	1	6.2	10	16	25	25	50	6.2	10	16	25	25	50	6.2	10	16	25	35	50	Z*	Z	10	16	25	25	50	6.2	10	25	50
	SIZE							0.3	10	LD	_	133	100	0.3	10	LD	_	33	100	4	0.3	_	.D10	_	133	100	0.3	LD.		30							
	SIZE		LD02 LE							יטע	3					LU	UJ					בט	00					L	טוע.	,				בט	14		

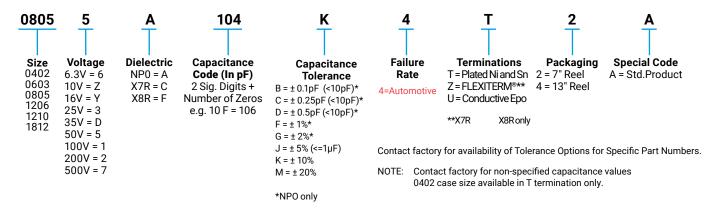
Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

^{*}Optional Specifications - Contact factory

NOTE: Contact factory for non-specified capacitance values

Automotive MLCC

General Specifications



GENERAL DESCRIPTION

KYOCERA AVX has supported the Automotive Industry requirements for Multilayer Ceramic Capacitors consistently for more than 25 years. Products have been developed and tested specifically for automotive applications and all manufacturing facilities are QS9000 and VDA 6.4 approved.

KYOCERA AVX is using AECQ200 as the qualification vehicle for this transition. A detailed qualification package is available on request and contains results on a range of part numbers.

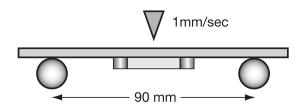
HOW TO ORDER

COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON

		Commercial	Automotive
Adm	inistrative	Standard Part Numbers. No restriction on who purchases these parts.	Specific Automotive Part Number. sed to control supply of product to Automotive customers.
	ation (Destructive Analysis - DPA)	As per EIA RS469	Increased sample plan stricter criteria.
Visual/Co	smetic Quality	Standard process and inspection	100% inspection
Application	on Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing.

All Tests have Accept/Reject Criteria 0/1

Automotive MLCC


NP0/X7R Dielectric

FLEXITERM FEATURES

a) Bend Test

The capacitor is soldered to the PC Board as shown:

Typical bend test results are shown below:

Style	Conventional	Soft Term
0603	>2mm	>5
0805	>2mm	>5
1206	>2mm	>5

a) Temperature Cycle testing FLEXITERM® has the ability to withstand at least 1000 cycles between -55°C and +125°C

Automotive MLCC-NP0

Case	Size		0402				0603			0805										12	206							1210			
Length (L)	mm (in.)		1.00 ± 0.1 040 ± 0.0				1.60 ± 0.1 .063 ± 0.0						2.01 ± 0.2 079 ± 0.0								± 0.20 ± 0.008)							3.20 ± 0.20 126 ± 0.00			
Width (W)	mm (in.)		0.50 ± 0.1 020 ± 0.0				0.81 ± 0.1 .032 ± 0.0						1.25 ± 0.2 049 ± 0.0							1.60 (0.063	± 0.20 ± 0.008)							2.50 ± 0.2 098 ± 0.0			
Terminal (t)	mm (in.)	(0.	0.25 ± 0.1 010 ± 0.0	5 06)			0.35 ± 0.1 .014 ± 0.0					(0.	0.50 ± 0.2 020 ± 0.0	5 10)						0.50 (0.020	± 0.25 ± 0.010)							0.50 ± 0.2 020 ± 0.0			
CAP	CAP Code	25	50	100	25	50	100	200	250	25	50	100	200	250	500	630	25	50	100	200	250	500	630	1000	50	100	200	250	500	630	1000
0.5	0R5	С	С	С	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
5	1R0 5R0	C	С	С	G	G	G G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	Q Q	Q Q	J	J	J	J	J	J	J
10	100	С	С	С	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
12	120	С	С	С	G	G	G	G	G	J	J	J	J	J	-		J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
15	150	С	С	С	G	G	G	G	G	J	J	J	J	J			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
18	180	С	С	С	G	G	G	G	G	J	J	J	J	J			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
22	220	С	С	С	G	G	G	G	G	J	J	J	J	J			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
33	270 330	С	C	C	G G	G	G	G	G	J	J J	J J	J	J			J	J	J	J	J	J	Q Q	Q Q	J	J	J	J	J	J J	J
39	390	С	С	С	G	G	G	G	G	J	J	J	J	J			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
47	470	С	С		G	G	G	G	G	J	J	J	J	J			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
56	560	С	С		G	G	G	G		J	J	J	J	N			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
68	680	С	С		G	G	G	G		J	J	J	J	N			J	J	J	J	J	J	Q	Q	J	J	J	J	J	J	J
82 100	820 101	С	C	<u> </u>	G	G	G G	G	-	J	J	J	J	N N	_		J	J	J	J	J	J	Q Q	Q	N N	N N	N N	N N	N N	N N	N N
120	121	С	C		G	G	G	6		J	J	J	J	N			J	J	J	J	J	J	Q	Q	N	N	N N	P	N P	P	X
150	151				G	G	G			J	J	J	J	N			J	J	J	J	J	J	Q	Q	N	N	N	P	P	P	X
180	181				G	G	G			J	J	J	J	N			J	J	J	J	J	J	Q	Q	N	N	N	Р	Р	Р	х
220	221				G	G	G			J	J	J	J	N			J	J	J	J	J	J	Q	Q	N	N	N	Р	Р	Р	Х
270	271				G	G	G			J	J	J	J	N			J	J	J	J	J	J	Q		N	N	N	P	P	P	Х
330 390	331 391				G G	G	G G		_	J	J	J	J J	N			J	J	J	J	J	J	Q Q		N N	N N	N N	P P	P	P	X
430	431				G	G				J	J	J	J				J	J	J	J	J	J	Q		N	N	N	P	P	P	X
470	471				G	G				J	J	J	J				J	J	J	J	J	J	Q		N	N	N	P	P	P	Х
560	561				G	G				J	J	J					J	J	J	J	М	Q	Q		N	N	N	Р	Р	Р	
680	681				G	G				J	J	J					J	J	J	J	М	Q	Q		N	N	N	Р	Р	Р	
1,000	102				G	G				J	J	J					J	J	J	J	М	Q	Q		N N	N	N	P	P	Х	
1,200	122 152				G	G				J	J						N N	N N	N N	N N					N	N N	N N	P	P		
2,200	222				G	_				J	J						М	М	М	М	М	М	М		N	N	N	P	K	K	
2,700	272				G												М	М	М	М	М	М	М						К	K	
3,300	332				G												М	М	М	М	М	М	М						K	K	
3,900	392				G												М	М	М	М	М	M	М						М	М	
4,700 5,600	472 562	-	-	-	G G	-	-		-	-	-		-	-	-	-	P	Р	Р	Р	Р	P	P		-	-	-	-	M M	M M	\vdash
6,800	682				G													<u> </u>											N	N	
8,200	822				G																								P	P	
10,000	103				G																							Х	Х	Х	
12,000	123					-												-			-					-		X			
15,000 18,000	153 183								-	-								-	-	-	-				-	-		X			
22,000	223			\vdash		-			\vdash	_								 	-	-	 			\vdash		 	\vdash	X			
27,000	273																											X			
33,000	333																											Х			
39,000	393																														
47,000	473			_		-												-	-	-				_		-	_				
56,000 68,000	563 683								-	-						_		-	-	-	-					-					
82,000	823				_	<u> </u>			<u> </u>									+		 	 					 					
100,000	104																														
CAP	CAP Code	25	50	100	25	50	100	200	250	25	50	100	200	250	500	630	25	50	100	200	250	500	630	1000	50	100	200	250	500	630	1000
Case	Size		0402				0603						0805							12	206							1210			

Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

Automotive MLCC - X7R

Capacitance Range

	Size		04	02					0603							08	305							1206						12	10			18	312			22	220		
Sol	ldering		Reflow	/Wave					Reflow/W	ave						Reflov	v/Wave						Re	flow/Wa	eve					Reflo	w Only			_	w Only			Reflov	v Only		
(L) Length	mm (in.)		1 ± (0.04 ±					((1.6 ± 0.1 0.063 ± 0.								± 0.2 ± 0.008)						(0.	3.2 ± 0.1 126 ± 0.0	2 008)					3.2 (0.126				(0.1	± 0.3 177 ± 012)			5.7 ±			
(W) Width	mm (in.)		0.5 ± (0.02 ±						0.81 ± 0. 0.032 ± 0.								± 0.2 ± 0.008)						(0.0	1.6 ± 0.0 063 ± 0.0	2 008)					2.5 (0.098	± 0.2 ± 0.008)			(0.1	± 0.2 126 ± 108)			5 ± (0.197 ±	0.4 ± 0.016)		
(t) Terminal	mm (in.)		0.25 ± (0.01 ±						0.35 ± 0. 0.014 ± 0.								± 0.25 ± 0.01)							0.5 ± 0.2 1.02 ± 0.0						0.5 ± (0.02 :				0.61 (0.0 0.0	± 0.36 024 ± 014)			0.64 5			
W	VVDC	6.3V	16V	25V	50V	10V	16V	25V	50V	100V	200V	250V	6.3V	10V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	500V	16V	25V	50V	100V	200V	250V	50V	100V	25V	50V	100V	200V	250V	500V
101	100																															М	Q					<u> </u>	ш	$oldsymbol{\sqcup}$	\vdash
221	220		С	С	С	G	G	G	G	G	G						-					-				<u> </u>						М	Q		-			<u> </u>	\sqcup	$oldsymbol{\sqcup}$	\vdash
271	270		С	С	С	G	G	G	G	G	G	<u> </u>				_	-		_			-			_	-				_		М	Q		-			<u></u>	₩	$\vdash \vdash$	\vdash
331 391	330 390		С	С	С	G	G	G	G	G	G											-										M	Q					\vdash	\vdash	Н	\vdash
471	390 470		С	С	С	G	G	G	G	G	G																					M	Q					\vdash	\vdash	\vdash	\vdash
561	560		С	С	С	G	G	G		G	G	-					 					 				 						м	Q		 			H	H	Н	\vdash
681	680		С	С	С	G	G	G	G	G	G																					М	Q					М	H	\vdash	М
821	820		С	С	С	G	G	G	G	G	G																					М	Q							\Box	\Box
102	1000		С	С	С	G	G	G	G	G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	К	K	К	К	М	Q	К	К			М	М	\Box	П
122	1220		С	С	С	G	G	G	G	G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	К	K	К	К	М	Q	К	К						
152	1500		С	С	С	G	G	G	G	G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	К	К	К	К	М	Q	К	K						
182	1800		С	С	С	G	G	G	G	G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	К	K	К	К	М	Q	К	К			<u> </u>		oxdot	ш
222	2200		С	С	С	G	G	G		G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	К	K	М	Q	К	K			<u> </u>	igspace	oxdot	ш
272	2700		С	С	С	G	G	G	G	G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	К	К	К	К	М	Q	К	К			<u> </u>	\vdash	igspace	\vdash
332	3300		С	С	С	G	G	G	_	G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	K	К	K	K	М	Q	К	K			-	\vdash	$\vdash \vdash$	\vdash
392 472	3900 4700		C	C	С	G	G	G	G	G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K			┢	\vdash	${m oldsymbol eta}$	\vdash
562	5600		С	С	С	G	G	G	G	G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K			\vdash	\vdash	\vdash	Н
682	6800		С	С	С	G	G	G	G	G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	К	K				H	\vdash	\vdash
822	8200		С	С	С	G	G	G		G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	К	K	К	K	м	Q	К	K				\vdash	Н	М
103	Cap 0.01		С	С	С	G	G	G	G	G	G	G			J	J	J	J	J	J	J	J	J	J	J	J	J	К	К	К	К	М	Q	К	К					\Box	\Box
123	(uF) 0.012		С			G	G	G	G	G					J	J	J	N	N	N	J	J	J	J	J	J		К	К	К	К	М	Q	К	К						
153	0.015		С			G	G	G	G	G					J	J	J	N	N	N	J	J	J	J	J	J		К	К	К	К	М	Q	К	К						\Box
183	0.018		С			G	G	G	G	G					J	J	J	N	N	N	J	J	J	J	J	J		K	К	К	К	М	Q	К	К						
223	0.022		С			G	G	G		G					J	J	J	N	N	N	J	J	J	J	Q	Q		K	K	К	К	М	Q	К	K					\square	\Box
273	0.027		С			G	G	G	G	J					J	J	J	N	N	N	J	J	J	J	Q	Q		K	K	К	К	М	Q	К	K			<u> </u>	igspace	ldot	ш
333	0.033		С			G	G	G		J					J	J	J	N	N	N	J	J	J	J	Q	Q		К	К	К	К	М	Q	К	K			<u> </u>	igspace	ightarrow	\vdash
393	0.039					G	G	G	G	J					J	J	J	N	N	N	J	J	J	J	Q	Q		K	K	K	K	М	Q	K	K			<u> </u>	\vdash	igspace	\vdash
473 563	0.047 0.056		-		-	G	G	G	G	J		-			J	J	J	N N	N	N	J	J	J	M	Q	Q		K	K	K	K M	M	Q	K	K		_	├	\vdash	\vdash	\vdash
683	0.058		-			G	G	G		J					J	J	J	N			J	J	J	M	Q	Q		K	K	K	M	M	Q	K	K		-	\vdash	\vdash	\vdash	\vdash
823	0.082				-	G	G	G	G	J		-			J	J	J	N			J	J	J	м	Q	Q		K	к	K	М	Q	Q	К	K			H	H	H	\vdash
104	0.1					G	G	G	G	J					J	J	J	N			J	J	J	М	Q	Q		К	К	К	М	Q	Q	К	К				М	\vdash	х
124	0.12					G	J	J							J	J	N	N			J	J	М	М	Q	Q		К	К	К	Р	Q	Q	К	К				\Box	\Box	\Box
154	0.15					G	J	J		İ					М	N	N	N			J	J	М	М	Q	Q		К	К	К	Р	Q	Q	К	К			Г	П	\Box	\sqcap
224	0.22					G	J	J							М	N	N	N			J	М	М	Q	Q	Q		М	М	М	Р	Q	Q	М	М						
334	0.33														N	N	N	N			J	М	Р	Q				Р	Р	Р	Q	Z	Z	х	Х						
474	0.47														N	N	N	N			М	М	Р	Q				Р	Р	Р	Q			Х	Х			\Box	\Box		
684	0.68														N	N	N	N			М	Q	Q	Q				Р	Р	Q	Х			Х	Х			\Box		لب	\square
105	1	С					_	1	1	1	1				N	N	N	N	_		М	Q	Q	Q		<u> </u>		Р	Q	Q	Z			х	Х		Z	Z	Х	Х	Ш
155	1.5				<u> </u>	<u> </u>	-	₩	+-	-	-	<u> </u>	<u> </u>		N	N	N	_	<u> </u>		Q	Q	Q	Q	<u> </u>	<u> </u>		P	Q	Z	Z		—	X	X	_	Z	Z	Z	Z	$\vdash \vdash$
225	2.2	\vdash			<u> </u>	<u> </u>	-	+	+	-	+	\vdash	\vdash		N	N	N	-	\vdash	<u> </u>	Q	Q	Q	Q	-	-		Z	Z	Z	Z	-		Z	Z	-	Z	Z	\vdash	\vdash	$\vdash\vdash$
335 475	3.3 4.7				-	-	1	+	+	1	+	-	\vdash				\vdash	-	-		Q Q	Q	Q Q			\vdash		X	Z	Z	Z	-		Z		-	Z	Z	\vdash	$\vdash\vdash$	Н
106	4.7		-		\vdash	\vdash	+	+	+	+	+	\vdash	P	Р		 	\vdash	1	\vdash		Ų	ų	ų		 	\vdash		Z	Z	Z		<u> </u>		Z		Z	Z	Z	\vdash	Н	$\vdash\vdash$
226	22		\vdash			\vdash	 	+	+	+	+	\vdash					\vdash		\vdash		 	\vdash							_	_				_		Z		<u> </u>	Н	М	М
		_					_	_		_		_						_			_		_									_		_			_		ш		-

	Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
	Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Th	nickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.04)	(0.05)	(0.055)	(0.060)	(0.07)	(0.09)	(0.1)	(0.11)
				PAPER						FMR	OSSED			

Automotive MLCC - X8R

Capacitance Range

	SIZE			0603			0805		12	06	
	Soldering	J		Reflow/Wave			Reflow/Wave		Reflow	/Wave	
WVDC	W	VDC	25V	50V	100V	25V	50V	100V	25V	50V	
472	pF	4700	G	G	G	J	J	J	J	J	
562		5600	G	G	G	J	J	J	J	J	
682		6800	G	G	G	J	J	J	J	J	
822		8200	G	G	G	J	J	J	J	J	
103	uF	0.01	G	G	G	J	J	J	J	J	
123		0.012	G	G		J	J	N	J	J	
153		0.015	G	G		J	J	N	J	J	
183		0.018	G	G		J	J	N	J	J	
223		0.022	G	G		J	J	N	J	J	
273		0.027	G	G		J	J		J	J	
333		0.033	G	G		J	J		J	J	
393		0.039	G	G		J	J		J	J	
473		0.047	G	G		J	J		J	J	
563		0.056	G			N	N		М	М	
683		0.068	G			N	N		М	М	
823		0.082				N	N		М	М	
104		0.1				N	N		М	М	
124		0.12				N	N		М	М	
154		0.15				N	N		М	М	
184		0.18				N			М	М	
224		0.22				N			М	М	
274		0.27							М	М	
334		0.33							М	М	
394		0.39							М	М	
474		0.47							М	Q	
684		0.68							Q	Q	
824		0.82							Q	Q	
105		1							Q	Q	
WVDC		/DC	25V	50V	100V	25V	50V	100V			
	SIZE			0603			0805		12	06	

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

APS for COTS+ High Reliability Applications

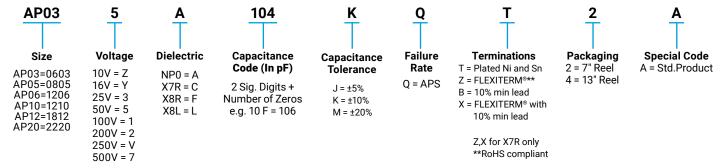
General Specifications Surface Mount NP0, X7R and X8R/L MLCCs

KYOCERA AVX's APS COTS+ series of multilayer ceramic capacitors offers the customer a high reliability solution with an ultralow failure rate, <1ppb, in a variety of case sizes and voltages. The APS range encompasses a wide range of dielectric types to meet the customer's requirements from low temperature/voltage capacitance change dielectric, NPO, to high preforming capacitance voltage X7R to high temperature reliability dielectrics, X8R/L.

APS capacitors have a wider capacitance range than MIL spec parts that satisfies the need for higher CV demands and board space saving requirements. Each production lot is extensively tested and removes the requirement for customer specific drawings. The testing regime uses many of the MIL-STD test methods as per MIL-PRF-55681 and has a field failure rate of less than 1 ppb. The APS testing series uses KYOCERA AVX's unique in-house maverick testing detection system that eliminates infant mortality failures.

Applications suitable for APS include Industrial, Telecommunications, Aviation, and Military. The APS is available with a range of different termination finishes, Flexiterm®, Nickel / Tin and Tin with Pb1. Flexiterm® technology delivers improved thermo-mechanical stress resistance.

APS RELIABILITY TEST SUMMARY


- 100% Visual Inspection
- DPA
- IR, DF, Cap, DWV
- Maverick Lot Review
- Thermal Shocl
- 85/85 Testina
- Additional Life Testing
- C of C with every Order
- Quarterly Data Package

FEATURES

- The APS range has been extensively reliability tested as standard resulting in an ultralow failure rate, ≤1ppb
- The APS range is available with Flexiterm® that deliver's high thermo-mechanical stress resistance.
- High CV range enabling board space saving requirements.

Dielectric	Temperature/Percentage Cap Change
NP0	-30ppm +30ppm from -55°C + 125°C
X7R	-15% +15% from -55°C to + 125°C
X8R	-15% +15% from -55°C to + 150°C
X8L	-15% +40% from -55°C to + 150°C

HOW TO ORDER

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Number.

APS COTS+ NP0 Series

Capacitance Range

Size	AP	03 = 060	03	AP	05 = 08	05		AF	P06 = 12	06			AP10 :	= 1210	
WVDC	25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	100V	200V
100 10pF	G	G	G	J	J	J	J	J	J	J	J				
120 12	G	G	G	J	J	J	J	J	J	J	J				
150 15	G	G	G	J	J	J	J	J	J	J	J				
180 18	G	G	G	J	J	J	J	J	J	J					
220 22	G	G	G	J	J	J	J	J	J	J					
270 27	G	G	G	J	J	J	J	J	J	J					
330 33	G	G	G	J	J	J	J	J	J	J					
390 39	G	G	G	J	J	J	J	J	J	J					
470 47	G	G	G	J	J	J	J	J	J	J					
510 51	G	G	G	J	J	J	J	J	J	J					
560 56	G	G	G	J	J	J	J	J	J	J					
680 68	G	G	G	J	J	J	J	J	J	J					
820 82	G	G	G	J	J	J	J	J	J	J					
101 100	G	G	G	J	J	J	J	J	J	J					
121 120	G	G	G	J	J	J	J	J	J	J					
151 150	G	G	G	J	J	J	J	J	J	J					
181 180	G	G	G	J	J	J	J	J	J	J					
221 220	G	G	G	J	J	J	J	J	J	J					
271 270	G	G	G	J	J	J	J	J	J	J					
331 330	G	G	G	J	J	J	J	J	J	J					
391 390	G	G		J	J	J	J	J	J	J					
471 470	G	G		J	J	J	J	J	J	J					
561 560				J	J	J	J	J	J	J					
681 680				J	J	J	J	J	J	J					
821 820				J	J	J	J	J	J	J					
102 1000				J	J	J	J	J	J	J		J	J	J	J
122 1200												J	J	М	М
152 1500												J	J	М	М
182 1800												J	J	М	М
222 2200												J	J	М	М
272 2700															
332 3300															
392 3900															
472 4700															
103 10nF															
WVDC	25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	100V	200V
Size	AP	03 = 060	03	AP	05 = 08	05		AF	P06 = 12	06			AP10 :	= 1210	

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

TS 16949, ISO 9001Certified

082917

APS COTS+ X7R Series

Capacitance Range

	Size		AP	03 = 00	503			AP	05 = 0	805				AP06 =	= 1206				AP10 :	= 1210)	AP12	= 1812	AP	20 = 22	220
	WVDC	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
102	Cap 1000	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	К	K	K	К	К	К			
182	(pF) 1800	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	К	К	К	K			
222	2200	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
332	3300	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
472	4700	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
103	0.01	G	G	G	G		J	J	J	J	٦	J	J	J	J	J	J	K	K	K	K	K	K			
123	0.012	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
153	0.015	G	G	G			J	J	٦	М		J	٦	J	J	J		K	K	K	K	K	K			
183	0.018	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
223	0.022	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
273	0.027	G	G	G			J	J	٦	М		J	٦	J	J	J		K	K	K	K	K	K			
333	0.033	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
473	0.047	G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	K	K	K			
563	0.056	G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	М	K	K			
683	0.068	G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	М	K	K			
823	0.082	G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	М	K	K			
104	0.1	G	G	G			J	J	М	М		J	J	J	М	J		K	K	K	М	K	K			
124	0.12						J	J	М	N		J	J	М	М			K	K	K	Р	K	K			
154	0.15						М	N	М	N		J	J	М	М			K	K	K	Р	K	K			
224	0.22						М	N	М	N		J	М	М	Q			М	М	М	Р	М	М			
334	0.33						N	N	М	N		J	М	Р	Q			Р	Р	Р	Q	X	Х			
474	0.47						N	N	М	N		М	М	Р	Q			Р	P	Р	Q	X	Х			
684	0.68						N	N	N			М	Q	Q	Q			Р	Р	Q	Х	Х	Х			
105							N	N	N*			М	Q	Q	Q*			Р	Q	Q	Z*	X	Х			
155	· /											Q	Q	Q				Р	Q	Z	Z	Х	Х			
225	2.2											Q	Q	Q				Z	Z	Z	Z*	Z	Z			
335	3.3						\sqcup					Q						Х	Z	Z	Z	Z				
475	4.7											Q						Х	Z	Z		Z*				
106	10																	Z	Z*						Z	Z*
226																								Z		
	WVDC	16V	25V	50V		200V	16V	25V	50V		200V	16V	25V	50V	100V	200V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
	Size		AP	03 = 00	503			AP	AP05 = 0805				AP06 =	= 1206				AP10 :	= 1210)	AP12	= 1812	AP	20 = 22	220	

^{*}Not currently available with lead plating finish, contact plant for further information.

Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

TS 16949, ISO 9001Certified

APS COTS+ X8R/L Series

Capacitance Range

X8R

	SIZE	AP03 =	: 0603	AP05	= 0805	AP06 =	1206		
,	WVDC	25V	50V	25V	50V	25V	50V		
331	Cap 330	G	G	J	J				
471	(pF) 470	G	G	J	J				
681	680	G	G	J	J				
102	1000	G	G	J	J	J	J		
152	1500	G	G	J	J	J	J		
222	2200	G	G	J	J	J	J		
332	3300	G	G	J	J	J	J		
472	4700	G	G	J	J	J	J		
682	6800	G	G	J	J	J	J		
103	Cap 0.01	G	G	J	J	J	J		
153	(μF) 0.015	G	G	J	J	J	J		
223	0.022	G	G	J	J	J	J		
333	0.033	G	G	J	J	J	J		
473	0.047	G	G	J	J	J	J		
683	0.068	G		N	N	M	М		
104	0.1			N	N	M	М		
154	0.15			N	N	M	М		
224	0.22			N		M	М		
334	0.33					M	М		
474	0.47					M			
684	0.68								
105	1								
1	WVDC	25V	50V	25V	50V	25V 50V			
	SIZE	060	03	08	305	1206			

X8L

	SIZE		AP03 = 060	3	,	AP05 = 080	5		AP06 =	= 1206	
	WVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V
331	Cap 330		G	G		J	J				
471	(pF) 470		G	G		J	J				
681	680		G	G		J	J				
102	1000		G	G		J	J				
152	1500		G	G		J	J			J	J
222	2200		G	G		J	J			J	J
332	3300		G	G		J	J			J	J
472	4700		G	G		J	J			J	J
682	6800		G	G		J	J			J	J
103	Cap 0.01		G	G		J	J			J	J
153	(μF) 0.015	G	G		J	J	J			J	J
223	0.022	G	G		J	J	J			J	J
333	0.033	G	G		J	J	N			J	J
473	0.047	G	G		J	J	N			J	7
683	0.068	G	G		J	J				J	7
104	0.1	G	G		J	J				J	М
154	0.15				J	N		J	J	J	Q
224	0.22				N	N		J	J	J	Q
334	0.33				N			J	M	Р	Q
474	0.47				N			М	M	Р	
684	0.68							М			
105	1							М			
	WVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V
	SIZE		0603			0805			12	06	

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z		
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79		
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)		
	PAPER						EMBOSSED								

TS 16949, ISO 9001Certified

082917

General Specifications

GENERAL DESCRIPTION

With increased requirements from the automotive industry for additional component robustness, KYOCERA AVX recognized the need to produce a MLCC with enhanced mechanical strength. It was noted that many components may be subject to severe flexing and vibration when used in various under the hood automotive and other harsh environment applications.

To satisfy the requirement for enhanced mechanical strength, KYOCERA AVX had to find a way of ensuring electrical integrity is maintained whilst external forces are being applied to the component. It was found that the structure of the termination needed to be flexible and after much research and development, KYOCERA AVX launched FLEXITERM®. FLEXITERM® is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor with an X7R dielectric. The industry standard for flexure is 2mm minimum. Using FLEXITERM®, KYOCERA AVX provides up to 5mm of flexure without internal cracks. Beyond 5mm, the capacitor will generally fail "open".

As well as for automotive applications FLEXITERM® will provide Design Engineers with a satisfactory solution when designing PCB's which may be subject to high levels of board flexure.

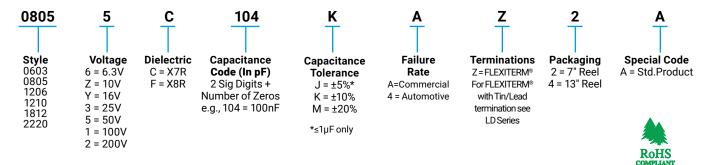
PRODUCT ADVANTAGES

- High mechanical performance able to withstand, 5mm bend test guaranteed
- Increased temperature cycling performance, 3000 cycles and beyond
- Flexible termination system
- Reduction in circuit board flex failures
- Base metal electrode system
- Automotive or commercial grade products available
- AECQ200 Qualified
- Approved to VW 80808 Specification

APPLICATIONS

High Flexure Stress Circuit Boards

· e.g. Depanelization: Components near edges of board.


Variable Temperature Applications

- · Soft termination offers improved reliability performance in applications where there is temperature variation.
- · e.g. All kind of engine sensors: Direct connection to battery rail.

Automotive Applications

- Improved reliability.
- Excellent mechanical performance and thermo mechanical performance.

HOW TO ORDER

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

Specifications and Test Methods

KYOCERa

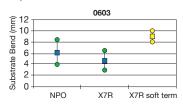
PERFORMANCE TESTING

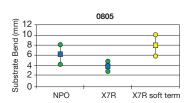
AEC-0200 Qualification:

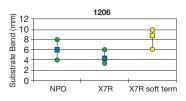
Created by the Automotive Electronics

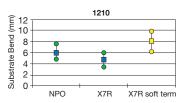
Specification defining stress test qualification for passive components

Testing:


Key tests used to compare soft termination to AEC-Q200 qualification:


- **Bend Test**
- Temperature Cycle Test

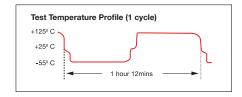



BOARD BEND TEST RESULTS

AEC-Q200 Vrs FLEXITERM® Bend Test

TABLE SUMMARY

Typical bend test results are shown below:

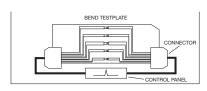


TEMPERATURE CYCLE TEST PROCEDURE

Test Procedure as per AEC-Q200:

The test is conducted to determine the resistance of the component when it is exposed to extremes of alternating high and low temperatures.

- Sample lot size quantity 77 pieces
- TC chamber cycle from -55°C to +125°C for 1000 cycles
- Interim electrical measurements at 250, 500, 1000 cycles
- Measure parameter capacitance dissipation factor, insulation resistance


BOARD BEND TEST PROCEDURE

According to AEC-Q200

Test Procedure as per AEC-Q200: Sample size: 20 components

Span: 90mm Minimum deflection spec: 2 mm

- Components soldered onto FR4 PCB (Figure 1)
- Board connected electrically to the test equipment

MOUNTING 41110

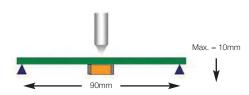

Fig 1 - PCB layout with electrical connections

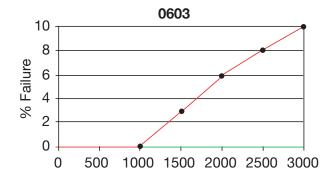
Fig 2 - Board Bend test equipment

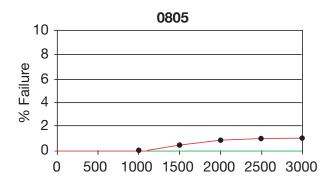
ENHANCED SOFT TERMINATION BEND TEST PROCEDURE

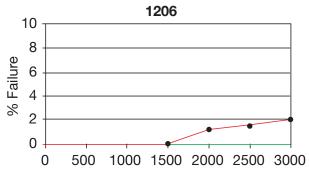
Bend Test

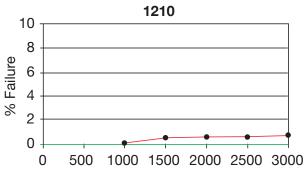
The capacitor is soldered to the printed circuit board as shown and is bent up to 10mm at 1mm per second:

- · The board is placed on 2 supports 90mm apart (capacitor side down)
- The row of capacitors is aligned with the load stressing knife


- · The load is applied and the deflection where the part starts to crack is recorded (Note: Equipment detects the start of the crack using a highly sensitive current detection circuit)
- The maximum deflection capability is 10mm

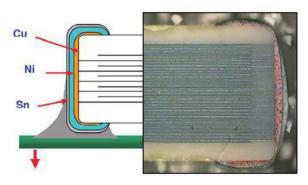



Specifications and Test Methods



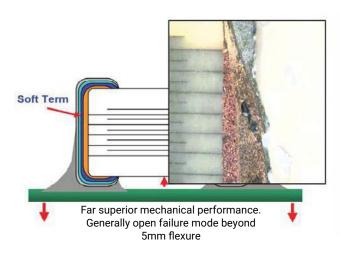
BEYOND 1000 CYCLES: TEMPERATURE CYCLE TEST RESULTS

Green = Soft Term MLCC (Flexiterm) Red = Standard MLCC


Soft Term - No Defects up to 3000 cycles

AEC-Q200 specification states 1000 cycles compared to 3000 temperature cycles.

FLEXITERM® TEST SUMMARY


- · Qualified to AEC-Q200 test/specification with the exception of using 3000 temperature cycles (up to +150°C bend test guaranteed greater than 5mm).
- · FLEXITERM® provides improved performance compared to standard termination systems.
- Board bend test improvement by a factor of 2 to 4 times.
- Temperature Cycling:
 - 0% Failure up to 3000 cycles
 - No ESR change up to 3000 cycle

WITHOUT SOFT TERMINATION

Major fear is of latent board flex failures.

WITH SOFT TERMINATION

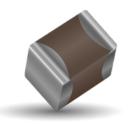
Capacitance Range X8R Dielectric

	SIZE	06	03	08	305	12	06
Sc	oldering	Reflow	//Wave	Reflov	v/Wave	Reflow	/Wave
	WVDC	25V	50V	25V	50V	25V	50V
	Cap 270	G	G				
	(pF) 330	G	G	J	J		
471	470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
182	1800	G	G	J	J	J	J
222	2200 2700	G	G	J	J	J	J
332	3300	G G	G G	J	J	J	J
332	3900	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
562	5600	G	G	J	J	J	J
682	6800	G	G	J	J	J	J
822	8200	G	G	J	J	Ĵ	J
	Cap 0.01	G	G	Ĵ	J	J	J
123	(µF) 0.012	G	G	Ĵ	J	J	J
153	0.015	G	G	J	J	J	J
183	0.018	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
273	0.027	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
393	0.039	G	G	J	J	J	J
473	0.047	G	G	J	J	J	J
563	0.056	G		N	N	М	М
683	0.068	G		N	N	М	М
823	0.082			N	N	M	M
104	0.1			N	N	M	M
124 154	0.12 0.15			N N	N N	M M	M M
184	0.15			N N	I N	M M	M
224	0.18			N N		M	M
274	0.22			IN		M	M
334	0.33				1	M	M
394	0.39					M	
474	0.47					M	
684	0.68		İ				
824	0.82		İ	İ			
105	1						
	WVDC	25V	50V	25V	50V	25V	50V
	SIZE	06	03	08	305	12	06

Letter	Α	С	E	G	J	K	М	N	Р	Q	Χ	Υ	Z
Max. Thicknes	0.33 s (0.013)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
Tillokiles	(0.013)	(0.022)	PAPER	(0.040)	(0.030)	(0.033)	EMBO	(/	(0.030)	(0.100)	(0.110)		

TS 16949, ISO 9001Certified

Capacitance Range X7R Dielectric


	Size 0402 0603				0805							120	6				12	10		1812		2220												
	Solderi	ng	Ref	ow/ V	Vave			R	eflow	/Wave					Reflo	w/Wa	ve				Re	eflow/	Wave				Reflov	v Only	/	Reflo	w Only	Re	flow C	nly
	WVD0	0	16V	25V	150V	10V	16V	25V	50V	100 V	200V	250V	16V	25V	50V	100 V	200V	250V	16V	25V	50V	100 V	/200V	1250V	500V	16V	25V	150V	100V	50V	100 V	25V	50V	100 V
221	Сар	220		С	С											С																		
271	(pF)	270	С	C	C																													
331		330	С	С	С																													
391		390	С	С	С												İ											1			Ì			
471		470	С	С	С																													
561		560	С	С	С																													
681		680	С	С	С										İ									Ì										
821		820	С	С	С																										Î			
102		1000	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
182		1800	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
222		2200	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
332		3300	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
472		4700	С	С	C		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	Ν	N			
103	Cap	0.01	С				G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
123	(μF)	0.012	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
153		0.015	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
183		0.018	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
223		0.022	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
273		0.027	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
333		0.033	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
473		0.047					G	G	G				J	J	J	N	N	N	J	J	J	М	J	J		K	K	K	K	N	N			
563		0.056					G	G	G				J	J	J	N			J	J	J	М	J	J		K	K	K	М	N	N			
683		0.068			_	_	G	G	G				J	J	J	N			J	J	J	М	J	J		K	K	K	М	N	N			
823		0.082					G	G	G				J	J	J	N			J	J	J	М	J	J		K	K	K	М	N	N			
104		0.1	С		_		G	G	G				J	J	J	N			J	J	J	М	J	J		K	K	K	М	N	N			
124		0.12		_	_	_	<u> </u>						J	J	N	N			J	J	М	М		_		K	K	K	P	N	N			
154		0.15		-	-	_							М	N	N	N			J	J	М	М	<u> </u>	<u> </u>		K	K	K	P	N	N			
224		0.22			_	G	J	J	J				М	N	N	N			J	М	M	Q	_	ļ		M	M	M	P	N	N			
334		0.33	_	-	1		L .		-	-			N	N	N	N	-	_	J	M	Р	Q	-	1	-	P	P	P	Q	X	X			
474		0.47		-	-	J	J	J	_				N	N	N	N	-		M	M	P	Q	_	-		P	Р	P	Q	X	X			
684 105		0.68		-	+	\vdash	\vdash	_	-	_			N	N	N	N	-	_	M	Q	Q	Q	_	-	_	P	P	Q	X	X	X			_
155		1.5		-	1	-	\vdash						N	N	N	N			M 0	Q	Q	Q		-		P	Q	Q Z	Z	X	X			
225		2.2		-	+	₩	\vdash		-					N		-	-			Q	Q	<u> </u>	+	 			Q			Z				
335		3.3	_	\vdash	+-	-	\vdash	_	_				N	N	-		-		Q	Q	Q		-	-		X	Z	Z	Z	Z	Z			_
475		4.7		-	1	1	-								-	-			Q	Q	-		1			X	Z	Z	Z	Z				Z
106		10		\vdash	-	\vdash	-		\vdash	-			-	\vdash	\vdash	-	-		Ų	Ų	_	-	+	-	-	Z	Z	Z			-		Z	Z
226		22	-	\vdash	+	\vdash	\vdash	\vdash	-	-			\vdash	-	\vdash	-	-	\vdash	-	-	\vdash	\vdash	\vdash	-	-						<u> </u>	Z		
220	WVD0		161/	251/	501/	101/	16\/	251/	501/	100 \/	200V	2501/	161/	251/	501/	100 \	2001/	2501/	16\/	251/	501/	100 \	/2001	2501	5001/	16\/	25V	501/	100 V	50V	100 V		50\/	100 V
	Size		100	0402		100	100	123V	06		2000	2501	100	Z3V		805	1 Z U U V	1230V	100	123V	JUV	120		1230 V	1000	100	23V 12		1100 V		1100 V	230	2220	100 V
C.25 0402 0000							_							120	_				- 12			- 10	,											

	Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z		
ı	Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79		
	Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)		
		PAPER						EMBOSSED								

FLEXISAFE MLC Chips

General Specifications and Capacitance Range For Ultra Safety Critical Applications

KYOCERA AVX have developed a range of components specifically for safety critical applications.

Utilizing the award-winning FLEXITERM™ layer in conjunction with the cascade design previously used for high voltage MLCCs, a range of ceramic capacitors is now available for customers who require components designed with an industry leading set of safety features.

The FLEXITERM™ layer protects the component from any damage to the ceramic resulting from mechanical stress during PCB assembly or use with end customers. Board flexure type mechanical damage accounts for the majority of MLCC failures. The addition of the cascade structure protects the component from low insulation resistance failure resulting from other common causes for failure; thermal stress damage, repetitive strike ESD damage and placement damage. With the inclusion of the cascade design structure to complement the FLEXITERM™ layer, the FLEXISAFE range of capacitors has unbeatable safety features. Flexisafe capacitors are qualified in accordance with AEC-Q200 standard. AEC-Q200 detailed qualification data is available on request

HOW TO ORDER

FS05 104 K Q Z 2 Special Size Voltage **Dielectric** Capacitance Capacitance **Failure Terminations Packaging** Code FS03 = 0603Code (In pF) **Tolerance** Z = FLEXITERM™ 2 = 7" Reel 16V = Y Rate FS05 = 0805 *X = FLEXITERM™ 4 = 13" Reel A = Std.Product $J = \pm 5\%$ 25V = 32 Sig. Digits + A = Commercial FS06 = 1206 K = ±10% with 5% min lead 50V = 5Number of 4 = Automotive FS10 = 1210 $M = \pm 20\%$ *Not RoHS Compliant Zeros 0 = APS100V = 1 e.g. $10\mu F = 106$

CAPACITANCE RANGE FLEXISAFE X7R

SI	SIZE FS03 = 0603						FS05 :	= 0805		FS	S06 = 120	6	FS10 = 1210			
W\	/DC	16	25	50	100	16	25	50	100	16	25	50	16	25	50	
102	1000	G	G	G	G	J	J	J	J	J	J	J				
182	1800	G	G	G	G	J	J	J	J	J	J	J				
222	2200	G	G	G	G	J	J	J	J	J	J	J				
332	3300	G	G	G	G	J	J	J	J	J	J	J				
472	4700	G	G	G	G	J	J	J	J	J	J	J				
682	6800	G	G	G	G	J	J	J	J	J	J	J				
103	0.01	G	G	G	G	J	J	J	J	J	J	J				
123	0.012	G	G	G		J	J	J	J	J	J	J				
153	0.015	G	G	G		J	J	J	J	J	J	J				
183	0.018	G	G	G		J	J	J	J	J	J	J				
223	0.022	G	G	G		N	N	N	N	J	J	7				
273	0.027					N	N	N	N	٦	7	7				
333	0.033					N	N	N	N	٦	7	7				
473	0.047					N	N	N	N	М	М	М				
563	0.056					N	N	N	N	М	М	М				
683	0.068					N	N	N	N	М	М	М				
823	0.082					N	N	N	N	М	М	М				
104	0.1					N	N	N	N	М	М	М				
124	0.12	, and the second				, in the second				М	М	М				
154	0.15									М	М	М	Q	Q	Q	
224	0.22												Q	Q	Q	
334	0.33												Q	Q	Q	
474	0.47												Q	Q	Q	

Letter	G	J	М	N	Q
Max. Thickness	0.90 (0.035)	0.94 (0.037)	1.27 (0.050)	1.40 (0.055)	1.78 (0.070)
	PAF	PER		EMBOSSED	

012721

Capacitor Array

Capacitor Array (IPC)

BENEFITS OF USING CAPACITOR ARRAYS

KYOCERA AVX capacitor arrays offer designers the opportunity to lower placement costs, increase assembly line output through lower component count per board and to reduce real estate requirements.

Reduced Costs

Placement costs are greatly reduced by effectively placing one device instead of four or two. This results in increased throughput and translates into savings on machine time. Inventory levels are lowered and further savings are made on solder materials, etc.

Space Saving

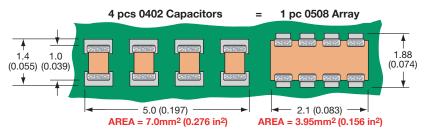
Space savings can be quite dramatic when compared to the use of discrete chip capacitors. As an example, the 0508 4-element array offers a space reduction of >40% vs. 4×0402 discrete capacitors and of >70% vs. 4×0603 discrete capacitors. (This calculation is dependent on the spacing of the discrete components.)

Increased Throughput

Assuming that there are 220 passive components placed in a mobile phone:

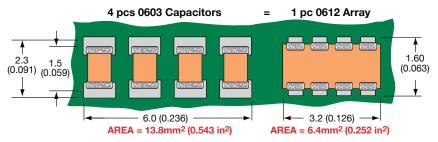
A reduction in the passive count to 200 (by replacing discrete components with arrays) results in an increase in throughput of approximately 9%.

A reduction of 40 placements increases throughput by 18%.


For high volume users of cap arrays using the very latest placement equipment capable of placing 10 components per second, the increase in throughput can be very significant and can have the overall effect of reducing the number of placement machines required to mount components:

If 120 million 2-element arrays or 40 million 4-element arrays were placed in a year, the requirement for placement equipment would be reduced by one machine.

During a 20Hr operational day a machine places 720K components. Over a working year of 167 days the machine can place approximately 120 million. If 2-element arrays are mounted instead of discrete components, then the number of placements is reduced by a factor of two and in the scenario where 120 million 2-element arrays are placed there is a saving of one pick and place machine.


Smaller volume users can also benefit from replacing discrete components with arrays. The total number of placements is reduced thus creating spare capacity on placement machines. This in turn generates the opportunity to increase overall production output without further investment in new equipment.

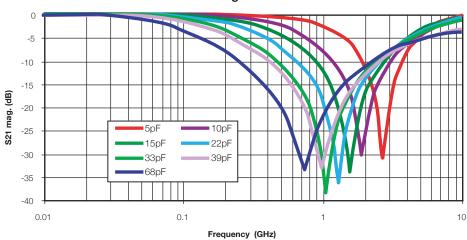
W2A (0508) Capacitor Arrays

The 0508 4-element capacitor array gives a PCB space saving of over 40% vs four 0402 discretes and over 70% vs four 0603 discrete capacitors.

W3A (0612) Capacitor Arrays

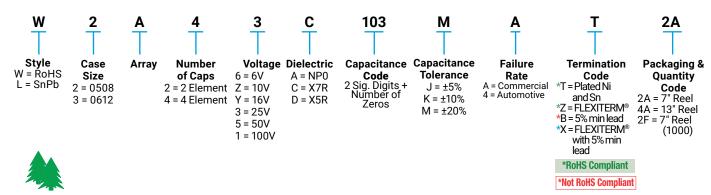
The 0612 4-element capacitor array gives a PCB space saving of over 50% vs four 0603 discretes and over 70% vs four 0805 discrete capacitors.

Capacitor Array (IPC)


GENERAL DESCRIPTION

KYOCERA AVX is the market leader in the development and manufacture of capacitor arrays. The array family of products also includes the 0612 4-element device as well as 0508 2-element and 4-element series, all of which have received widespread acceptance in the marketplace.

KYOCERA AVX capacitor arrays are available in X5R, X7R and NP0 (C0G) ceramic dielectrics to cover a broad range of capacitance values. Voltage ratings from 6.3 Volts up to 100 Volts are offered. KYOCERA AVX also now offers a range of automotive capacitor arrays qualified to AEC-Q200 (see separate table).


Key markets for capacitor arrays are Mobile and Cordless Phones, Digital Set Top Boxes, Computer Motherboards and Peripherals as well as Automotive applications, RF Modems, Networking Products, etc.

AVX Capacitor Array - W2A41A***K S21 Magnitude

HOW TO ORDER

RoHS COMPLIANT

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

020922

Packaqinq Packaqinq Length mm (in.) (Width mm (in.) (Max. mm Thickness (in.) WVDC 16 1R0 Cap 1.0 1R2 (pF) 1.2 1R5 1.5 1.8 2R2 2.2 2 2R7 2.7 3R3 3.3 3R9 3.9 3.9	# Reflow/Wa per/Embos 1.30 ± 0.1 0.051 ± 0.0 2.10 ± 0.1 0.083 ± 0.0 0.94 (0.037) 25	5 06) 5	Pap 1. (0.:	# flow/Wa er/Embos .60 ± 0.15 .60 ± 0.15 .63 ± 0.00 .3.20 ± 0.20 1.26 ± 0.00 1.35 (0.053)	sed 0 06)
Soldering	Reflow/Wa aper/Embos 1.30 ± 0.1 0.051 ± 0.0 2.10 ± 0.1 0.083 ± 0.0 0.94 (0.037)	ssed 5 06) 5 06)	Pap 1. (0.1 3 (0.1	flow/Wa er/Embos .60 ± 0.15 063 ± 0.00 3.20 ± 0.20 126 ± 0.00 1.35 (0.053)	sed 0 06)
Packaginq Packaginq Length mm (in.) (in.) (in.) Width mm (in.) (in.) Max. mm Thickness (in.) 1.0 1R0 Cap 1.0 1.2 1R2 (pF) 1.2 1.5 1R8 1.8 2R2 2R2 2.2 2R7 2R7 2.7 3R3 3.3 3R9 3.9	1.30 ± 0.1 0.051 ± 0.0 2.10 ± 0.1 0.083 ± 0.0 0.94 (0.037)	ssed 5 06) 5 06)	Pap 1. (0.1 3 (0.1	er/Embos .60 ± 0.15 063 ± 0.00 3.20 ± 0.20 126 ± 0.00 1.35 (0.053)	sed 0 06)
Length (in.) (Width (in.) (in.) (Max. mm Thickness (in.) (In	1.30 ± 0.1 0.051 ± 0.0 2.10 ± 0.1 0.083 ± 0.0 0.94 (0.037)	5 06) 5 06)	(0.) (0.) (0.)	.60 ± 0.15 063 ± 0.00 3.20 ± 0.20 126 ± 0.00 1.35 (0.053)	0 06))
Midth	$\begin{array}{c} 0.051 \pm 0.0 \\ 2.10 \pm 0.1 \\ 0.083 \pm 0.0 \\ 0.94 \\ (0.037) \end{array}$	06) 5 06)	(0.) 3 (0.)	063 ± 0.00 3.20 ± 0.20 126 ± 0.00 1.35 (0.053))6))
Max. mm Thickness (in.) Max. mm Thickness (in.) MVDC 16 180 Cap 1.0 182 (pF) 1.2 185 1.5 188 1.8 282 2.2 287 2.7 383 3.3 389 3.9 3.9	0.083 ± 0.0 0.94 (0.037)	06)	(0.	126 ± 0.00 1.35 (0.053)	
Max. mm Thickness (in.) WVDC 16 1R0 Cap 1.0 1R2 (pF) 1.2 1R5 1.5 1.5 1R8 1.8 2.2 2R7 2.7 3R3 3.3 3R9 3.9	0.94 (0.037)			1.35 (0.053)	18)
Thickness (in.) WVDC 16 1R0 Cap 1.0 1R2 (pF) 1.2 1R5 1.5 1.8 2R2 2.2 2.7 3R3 3.3 3R9 3.9	(0.037)	50	16	(0.053)	
WVDC 16 1R0 Cap 1.0 1R2 (pF) 1.2 1R5 1.5 1R8 1.8 2R2 2.2 2R7 2.7 3R3 3.3 3R9 3.9	25	50	16	0-	
1R2 (pF) 1.2 1R5 1.5 1R8 1.8 2R2 2.2 2R7 2.7 3R3 3.3 3R9 3.9				25	50
1R5 1.5 1R8 1.8 2R2 2.2 2R7 2.7 3R3 3.3 3R9 3.9					
1R8 1.8 2R2 2.2 2R7 2.7 3R3 3.3 3R9 3.9					
2R2 2.2 2R7 2.7 3R3 3.3 3R9 3.9					
2R7 2.7 3R3 3.3 3R9 3.9					
3R3 3.3 3R9 3.9					
3R9 3.9					
4R7 4.7					
5R6 5.6 6R8 6.8					
8R2 8.2					
100 10					
120 12					
150 15					
180 18					
220 22					
270 27					
330 33					
390 39					
470 47					
560 56					
680 68					
820 82					
101 100 121 120					
151 150					
181 180					
221 220					
271 270					
331 330					
391 390					
471 470					
561 560					
681 680					
821 820					
102 1000					
122 1200					
152 1500					
182 1800 222 2200					
272 2700					
332 3300					
392 3900					
472 4700					
562 5600					
682 6800					
822 8200			1		

= Supported Values

	SIZE			1	N2 =	050	8			V	/2 =	050	8				V3 =	061	2	
#	Elemen	ts				2						4						1		
	Soldering				Reflov		e					//Wav					Reflow			
	Packaqinq					aper				Pa		mboss					per/Er			
Lengt	th	mm (in.)		(1.30	± 0.15				(0		± 0.15					1.60 ±			
		(in.) mm		('		± 0.00				(0.051 ± 0.006) 2.10 ± 0.15			(0.063 ± 0.006) 3.20 ± 0.20							
Width	1	(in.)		(0.083 ± 0.006)				(0.083 ± 0.006)					(0	0.26 :		8)				
Max.		mm			0.	94					0.	94					1.:	35		
Thick	ness	(in.)				037)					(0.0	37)					(0.0			
101	WVDC Cap	100	6	10	16	25	50	100	6	10	16	25	50	100	6	10	16	25	50	100
121	(PF)	120																		
151	(1.1)	150																		
181		180																		
221		220																		
271		270																		
331		330 390																		
471		470																		
561		560																		
681		680																		
821		820																		
102 122		1000 1200																		
152		1500																		
182		1800																		
222		2200																		
272		2700																		
332		3300																		
392		3900																		
472 562		4700 5600																		
682		6800																		
822		8200																		
103		0.010																		
123		0.012																		
153		0.015																		
183 223		0.018 0.022																		
273		0.022																		
333		0.033																		
393		0.039																		
473		0.047																		\vdash
563 683		0.056 0.068																		
823		0.008																		
104		0.10																		
124		0.12																		
154		0.15																		ш
184 224		0.18 0.22																		
274		0.22																		
334		0.27																		Н
474		0.47																		
564		0.56		<u> </u>			<u> </u>										_			Ш
684		0.68																		
824 105		0.82 1.0																		
125		1.0	-		-		\vdash	-	 	-										\vdash
155		1.5	l	l			l		l								1			
185		1.8																		
225		2.2																		
335		3.3																		
475 106		4.7 10		<u> </u>						-				-	-					$\vdash\vdash$
226		22																		
476		47																		
107		100	L	L	L	L	L	L	L	L		L	L	L	L	L	L	L		<u>∟</u> ∣
																				—

Automotive Capacitor Array (IPC)

As the market leader in the development and manufacture of capacitor arrays KYOCERA AVX is pleased to offer a range of AEC-Q200 qualified arrays to compliment our product offering to the Automotive industry. Both the KYOCERA AVX 0612 and 0508 4-element capacitor array styles are qualified to the AEC-Q200 automotive specifications.

AEC-Q200 is the Automotive Industry qualification standard and a detailed qualification package is available on request.

All KYOCERA AVX automotive capacitor array production facilities are certified to ISO/TS 16949:2002.

HOW TO ORDER

$\frac{w}{T}$	<u>3</u>	<u>A</u>	4	<u>Y</u>	<u>c</u>	<u>104</u>	<u>K</u>	4	<u>T</u>	2A
Style W = RoHS L = SnPb	Case Size 2 = 0508 3 = 0612	Array	Number of Caps	Voltage Z = 10V Y = 16V 3 = 25V 5 = 50V 1 = 100V	Dielectric A = NP0 C = X7R F = X8R	Capacitance Code (In pF) Significant Digits + Number of Zeros e.g. 10µF=106	Capacitance Tolerance *J = $\pm 5\%$ *K = $\pm 10\%$ *M = $\pm 20\%$	Failure Rate 4 = Automotive	Terminations *T = Plated Ni and Sn *Z = FLEXITERM® B = 5% min lead X = FLEXITERM® with 5% min lead *RoHS Compliant	Packaging & Quantity Code 2A = 7" Reel 4A = 13" Reel 2F = 7" Reel (1000)

^{*}Contact factory for availability by part number for $K = \pm 10\%$ and $J = \pm 5\%$ tolerance.

NPO/COG

SIZI	Ε	W3	3 = 06	12
No. of Eler	nents	Re	flow/Wa	ive
WVD	2	16	25	50
1R0 Ca	p 1.0			
1R2 (pl	1.2			i i
1R5	1.5		İ	i i
1R8	1.8			
2R2	2.2			
2R7	2.7			
3R3	3.3			
3R9	3.9			
4R7	4.7			
5R6	5.6			
6R8	6.8			
8R2	8.2			
100	10			
120	12			
150 180	15 18			
220 270	22 27			
330	33			
390	39			
470	47			
560	56			
680	68			
820	82			
101	100			
121	120			
151	150			
181	180			
221	220			
271	270			
331	330			
391	390			
471	470			
561	560			
681	680			
821	820			
102	1000			
122	1200			
152 182	1500 1800			\vdash
222	2200			
272	2700			
332	3300		 	\vdash
392	3900			
472	4700			
562	5600			\vdash
682	6800		l	
822	8200		l	

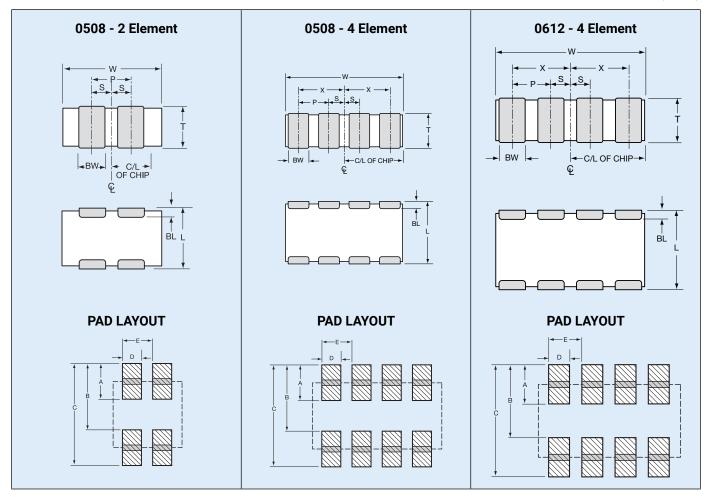
= NPO/COG

X7R

	SIZE	W2 = 0508				W2 =	0508			W	3 = 06	12		
No.	of Elements			2			-	4				4		
	WVDC	16	25	50	100	16	25	50	100	10	16	25	50	100
101 121 151	Cap 100 (pF) 120 150													
181 221 271	180 220 270													
331 391 471	330 390 470													
561 681 821	560 680 820													
102 122 152	1000 1200 1500													
182 222 272	1800 2200 2700													
332 392 472	3300 3900 4700													
562 682 822	5600 6800 8200													
103 123 153	(μF) 0.012 0.015													
153 223 273	0.018 0.022 0.027													
333 393 473	0.033 0.039 0.047													
563 683 823	0.056 0.068 0.082													
104 124 154	0.10 0.12 0.15													
224	0.22													

*Not RoHS Compliant

For RoHS compliant products,



= X7R

PART & PAD LAYOUT DIMENSIONS

millimeters (inches)

PART DIMENSIONS

0508 - 2 Element

L	W	T	BW	BL	Р	S
1.30 ± 0.15	2.10 ± 0.15	0.94 MAX	0.43 ± 0.10	0.33 ± 0.08	1.00 REF	0.50 ± 0.10
(0.051 ± 0.006)	(0.083 ± 0.006)	(0.037 MAX)	(0.017 ± 0.004)	(0.013 ± 0.003)	(0.039 REF)	(0.020 ± 0.004)

0508 - 4 Element

L	W	T	BW	BL	P	X	S
1.30 ± 0.15	2.10 ± 0.15	0.94 MAX	0.25 ± 0.06	0.20 ± 0.08	0.50 REF	0.75 ± 0.10	0.25 ± 0.10
(0.051 ± 0.006)	(0.083 ± 0.006)	(0.037 MAX)	(0.010 ± 0.003)	(0.008 ± 0.003)	(0.020 REF)	(0.030 ± 0.004)	(0.010 ± 0.004)

0612 - 4 Element

L	W	Т	BW	BL	Р	Χ	S
1.60 ± 0.20	3.20 ± 0.20	1.35 MAX	0.41 ± 0.10		0.76 REF	1.14 ± 0.10	0.38 ± 0.10
(0.063 ± 0.008)	(0.126 ± 0.008)	(0.053 MAX)	(0.016 ± 0.004)	(0.007 + 0.010) -0.003	(0.030 REF)	(0.045 ± 0.004)	(0.015 ± 0.004)

PAD LAYOUT DIMENSIONS

0508 - 2 Element

Α	В	С	D	E
0.68	1.32	2.00	0.46	1.00
(0.027)	(0.052)	(0.079)	(0.018)	(0.039)

0508 - 4 Element

Α	В	С	D	E
0.56	1.32	1.88	0.30	0.50
(0.022)	(0.052)	(0.074)	(0.012)	(0.020)

0612 - 4 Element

Α	В	С	D	E
0.89	1.65	2.54	0.46	0.76
(0.035)	(0.065)	(0.100)	(0.018)	(0.030)

Low Inductance Capacitors

Introduction

The signal integrity characteristics of a Power Delivery Network (PDN) are becoming critical aspects of board level and semiconductor package designs due to higher operating frequencies, larger power demands, and the ever shrinking lower and upper voltage limits around low operating voltages. These power system challenges are coming from mainstream designs with operating frequencies of 300MHz or greater, modest ICs with power demand of 15 watts or more, and operating voltages below 3 volts.

The classic PDN topology is comprised of a series of capacitor stages. Figure 1 is an example of this architecture with multiple capacitor stages.

An ideal capacitor can transfer all its stored energy to a load instantly. A real capacitor has parasitics that prevent instantaneous transfer of a capacitor's stored energy. The true nature of a capacitor can be modeled as an RLC equivalent circuit. For most simulation purposes, it is possible to model the characteristics of a real capacitor with one capacitor, one resistor, and one inductor. The RLC values in this model are commonly referred to as equivalent series capacitance (ESC), equivalent series resistance (ESR), and equivalent series inductance (ESL).

The ESL of a capacitor determines the speed of energy transfer to a load. The lower the ESL of a capacitor, the faster that energy can be transferred to a load. Historically, there has been a tradeoff between energy storage (capacitance) and inductance (speed of energy delivery). Low ESL devices typically have low capacitance. Likewise, higher capacitance devices typically have higher ESLs. This tradeoff between ESL (speed of energy delivery) and capacitance (energy storage) drives the PDN design topology that places the fastest low ESL capacitors as close to the load as possible. Low Inductance MLCCs are found on semiconductor packages and on boards as close as possible to the load.

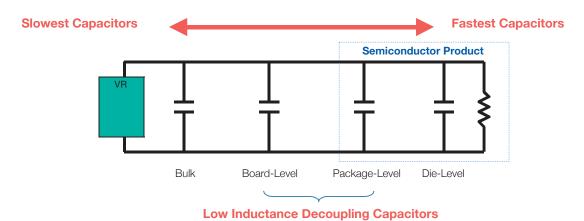


Figure 1 Classic Power Delivery Network (PDN) Architecture

LOW INDUCTANCE CHIP CAPACITORS

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL. A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC®) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer side of its rectangular shape.

When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC® versus a standard MLCC.

INTERDIGITATED CAPACITORS

The size of a current loop has the greatest impact on the ESL characteristics of a surface mount capacitor. There is a secondary method for decreasing the ESL of a capacitor. This secondary method uses adjacent opposing current loops to reduce ESL. The InterDigitated Capacitor (IDC) utilizes both primary and secondary methods of reducing inductance. The IDC architecture shrinks the distance between terminations to minimize the current loop size, then further reduces inductance by creating adjacent opposing current loops.

An IDC is one single capacitor with an internal structure that has been optimized for low ESL. Similar to standard MLCC versus LICC®s, the reduction in ESL varies by EIA case size. Typically, for the same EIA size, an IDC delivers an ESL that is at least 80% lower than an MLCC.

Low Inductance Capacitors

Introduction

LAND GRID ARRAY (LGA) CAPACITORS

Land Grid Array (LGA) capacitors are based on the first Low ESL MLCC technology created to specifically address the design needs of current day Power Delivery Networks (PDNs). This is the 3rd low inductance capacitor technology developed by KYOCERA AVX. LGA technology provides engineers with new options. The LGA internal structure and manufacturing technology eliminates the historic need for a device to be physically small to create small current loops to minimize inductance.

The first family of LGA products are 2 terminal devices. A 2 terminal 0306 LGA delivers ESL performance that is equal to or better than an 0306 8 terminal IDC. The 2 terminal 0805 LGA delivers ESL performance that approaches the 0508 8 terminal IDC. New designs that would have used 8 terminal IDCs are moving to 2 terminal LGAs because the layout is easier for a 2 terminal device and manufacturing yield is better for a 2 terminal LGA versus an 8 terminal IDC.

LGA technology is also used in a 4 terminal family of products that KYOCERA AVX is sampling and will formerly introduce in 2008. Beyond 2008, there are new multi-terminal LGA product families that will provide even more attractive options for PDN designers.

LOW INDUCTANCE CHIP ARRAYS (LICA®)

The LICA® product family is the result of a joint development effort between KYOCERA AVX and IBM to develop a high performance MLCC family of decoupling capacitors. LICA was introduced in the 1980s and remains the leading choice of designers in high performance semiconductor packages and high reliability board level decoupling applications.

LICA® products are used in 99.999% uptime semiconductor package applications on both ceramic and organic substrates. The C4 solder ball termination option is the perfect compliment to flip-chip packaging technology. Mainframe class CPUs, ultimate performance multi-chip modules, and communications systems that must have the reliability of 5 9's use LICA®.

LICA® products with either Sn/Pb or Pb-free solder balls are used for decoupling in high reliability military and aerospace applications. These LICA® devices are used for decoupling of large pin count FPGAs, ASICs, CPUs, and other high power ICs with low operating voltages.

When high reliability decoupling applications require the very lowest ESL capacitors, LICA® products are the best option.

470 nF 0306 Impedance Comparison

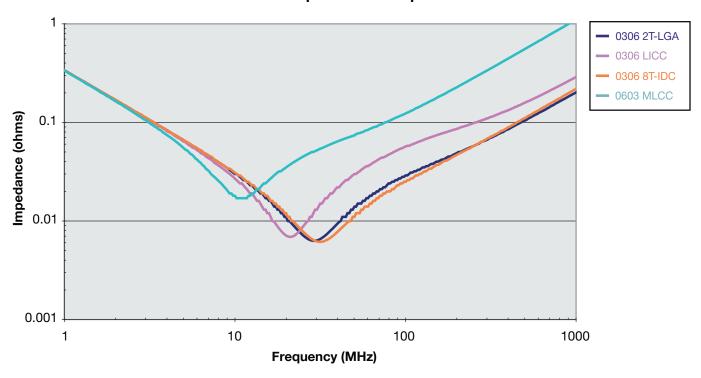
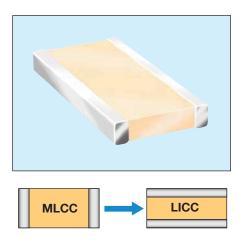


Figure 2 MLCC, LICC®, IDC, and LGA technologies deliver different levels of equivalent series inductance (ESL).

Low Inductance Ceramic Capacitors

0204/0306/0508/0612 RoHS Compliant **LICC®** (Low Inductance Chip Capacitors)


GENERAL DESCRIPTION

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL.

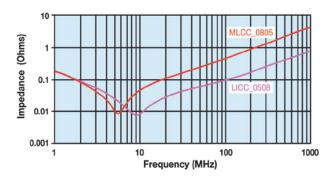
A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC®) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC®.

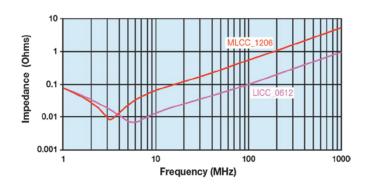
When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC® versus a standard MLCC.

KYOCERA AVX LICC® products are available with a lead-free finish of plated Nickel/Tin.

PERFORMANCE CHARACTERISTICS

Capacitance Tolerances	K = ±10%; M = ±20%
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C
Temperature Coefficient	X7R, X5R = ±15%; X7S = ±22%
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	4V, 6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max; 25V = 3.0% max
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μF min.,whichever is less


HOW TO ORDER


0612	Z	D	105	M	Α	T	2	A *
Size 0204 0306 0508 0612	Voltage 4 = 4V 6 = 6.3V Z = 10V Y = 16V 3 = 25V 5 = 50V	Dielectric C = X7R D = X5R W = X6S Z = X7S	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance K = ±10% M = ±20%	Failure Rate A = N/A 4 = Automotive**	Terminations T = Plated Ni and Sn	Packaging Available 2 = 7" Reel 4 = 13" Reel	Thickness Thickness mm (in) 0.56 (0.022) 0.76 (0.030) 1.02 (0.040) 1.27 (0.050)

^{*}See the thickness tables on the next page.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

TYPICAL IMPEDANCE CHARACTERISTICS

^{**}Select voltages for Automotive version, contact factory

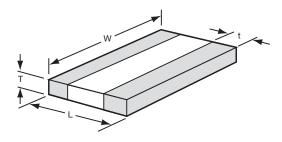
Low Inductance Ceramic Capacitors

LICC® (Low Inductance Chip Capacitors)

0204/0306/0508/0612 RoHS Compliant

	SIZE			04				0306					0508					0612		
Packaging			Pa	per				Paper					/Emb		ŀ		Paper	/Emb	ossec	j
Length	mm (in.)	(0	0.50 ± 0.05 (0.020 ± 0.002)				(0.03	31 + 0 32 ± 0	.006)			(0.05	27 + 0 50 ± 0	010)			(0.06	60 + 0 63 ± 0	.010)	
Width	mm (in.)		1.00 : :040					60 + 0 63 ± 0					00 + 0 00 ± 0					20 + 0 26 ± 0		
Cap Code	WVDC	4	6.3	10	16	4	6.3	10	16	25	6.3	10	16	25	50	6.3	10	16	25	50
102	Cap 0.001						Α	Α	Α	Α	٧	٧	٧	٧	٧	S	S	S	S	V
222	(μF) .0022						Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	V
332	0.0033						Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	V
472	0.0047						Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	V
682	0.0068						Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	V
103	0.01						Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	V
153	0.015						Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
223	0.022						Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
333	0.033						Α	Α	Α		S	S	S	٧	٧	S	S	S	S	W
473	0.047						Α	Α	Α		S	S	S	٧	Α	S	S	S	S	W
683	0.068						Α	Α	Α		S	S	S	Α	Α	S	S	S	٧	W
104	0.1	d					Α	Α	///		S	S	٧	Α	Α	S	S	S	٧	W
154	0.15						Α	Α			S	S	٧			S	S	S	W	W
224	0.22						Α	Α			S	S	Α			S	S	٧	W	
334	0.33										٧	٧	Α			S	S	٧		
474	0.47										٧	٧	/#//			S	S	٧		
684	0.68										Α	Α	///			٧	٧	W		
105	1					A					Α	Α				V	٧	Α		
155	1.5										//					W	W			
225	2.2															Α	Α			
335	3.3															//				
475	4.7																			
685	6.8																			
106	10																			

mm (in.)						
0204						
Thickness						
0.35 (0.014)						


Solid = X7R

	mm (in.)
	0306
Code	Thickness
Α	0.56 (0.022)

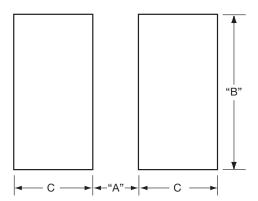
า (in.)		mm (in.
		0508
ness	Code	Thickness
.022)	S	0.56 (0.022
	٧	0.76 (0.030
	Α	1.02 (0.040

	mm (in.)
	0612
Code	Thickness
S	0.56 (0.022)
V	0.76 (0.030)
W	1.02 (0.040)
Α	1.27 (0.050)

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL DIMENSIONS

MM (IN.)


Size	L	W	t
0204	0.50 ± 0.05	1.00 ± 0.05	0.18 ± 0.08
0204	(0.020 ± 0.002)	(0.040 ± 0.002)	(0.007 ± 0.003)
0306	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
0300	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)
0508	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
USUA	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)
0612	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
0012	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)

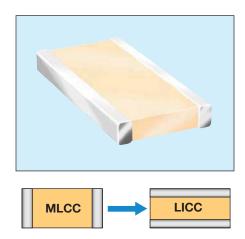
T - See Range Chart for Thickness and Codes

PAD LAYOUT DIMENSIONS

MM (IN.)

Size	Α	В	С
0306	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)
0508	0.51 (0.020)	2.03 (0.080)	0.76 (0.030)
0612	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)
0204			

Low Inductance Capacitors with SnPb Terminations

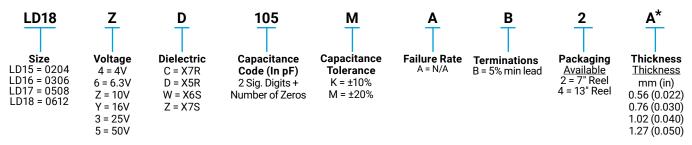

GENERAL DESCRIPTION

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL.

A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC®) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC®.

When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC® versus a standard MLCC.

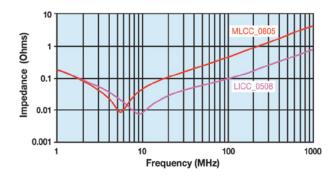
AVX LICC® products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues.

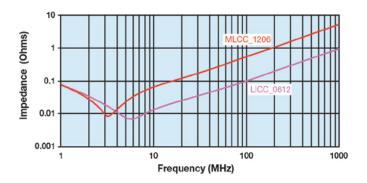


PERFORMANCE CHARACTERISTICS

Capacitance Tolerances	K = ±10%; M = ±20%
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C
Temperature Coefficient	X7R, X5R = ±15%; X7S = ±22%
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	4V, 6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max; 25V = 3.0% max
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μF min.,whichever is less

*Not RoHS Compliant

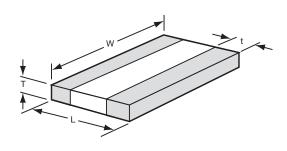

HOW TO ORDER



*See the thickness tables on the next page.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

TYPICAL IMPEDANCE CHARACTERISTICS


Low Inductance Capacitors with SnPb Terminations

LD15/LD16/LD17/LD18 Tin-Lead Termination "B"

	SIZE			15 204)				LD16					LD17					LD18 0612		
Pa	ackaging			per		Paper				Paper/Embossed				Paper/Embossed						
	mm (in.)		.020 :	± 0.05 ± 0.00		0.81 ± 0.15 (0.032 ± 0.006)				1.27 ± 0.25 (0.050 ± 0.010)				1.60 ± 0.25 (0.063 ± 0.010)						
Width	mm (in.)	(0		± 0.05 ± 0.00	2)			60 ± 0. 63 ± 0.					00 ± 0 80 ± 0					20 ± 0 26 ± 0		
Cap Code	WVDC	4	6.3	10	16	4	6.3	10	16	25	6.3	10	16	25	50	6.3	10	16	25	50
102	Cap 0.001						Α	Α	Α	Α	S	S	S	S	V	S	S	S	S	٧
222	(μF) .0022						Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
332	0.0033						Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
472	0.0047						Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
682	0.0068						Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
103	0.01						Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
153	0.015						Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
223	0.022						Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
333	0.033						Α	Α	Α		S	S	S	٧	٧	S	S	S	S	W
473	0.047						Α	Α	Α		S	S	S	٧	Α	S	S	S	S	W
683	0.068						Α	Α	Α		S	S	S	Α	Α	S	S	S	٧	W
104	0.1	c					Α	Α			S	S	٧	Α	Α	S	S	S	٧	W
154	0.15						Α	Α			S	S	٧			S	S	S	W	W
224	0.22						Α	Α			S	S	Α			S	S	٧	W	
334	0.33										٧	٧	Α			S	S	٧		
474	0.47										٧		Α			S	S	٧		
684	0.68										Α	Α				٧	٧	W		
105	1					A					Α	Α				V	٧	Α		
155	1.5										/N/					W	W			
225	2.2															Α	Α			
335	3.3															/4//				
475	4.7																			
685	6.8																			
106	10																			

PHYSICAL DIMENSIONS AND **PAD LAYOUT**

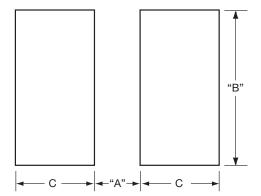
<u>PHYSI</u>	CAL DIMENS	SIONS	IVIIVI (IIV.)
Size	L	W	t
LD15	0.50 ± 0.05	1.00 ± 0.05	0.18 ± 0.08
(0204)	(0.020 ± 0.002)	(0.040 ± 0.002)	(0.007 ± 0.003)
LD16	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
(0306)	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)
LD17	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
(0508)	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)
LD18	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
(0612)	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)

T - See Range Chart for Thickness and Codes

Solid = X7R

mm (in.)

LD15							
((0204)						
Code	Thickness						
C 0.35 (0.014)							


mm (in.)						
LD16						
(0306)						
Code	Thickness					
Α	0.56 (0.022)					

	mm (in.)						
LD17							
(0508)							
Code	Thickness						
S	0.56 (0.022)						
V	0.76 (0.030)						
Α	1.02 (0.040)						

	mm (in.)						
	LD18						
(0612)							
Code	Thickness						
S	0.56 (0.022)						
٧	0.76 (0.030)						
W	1.02 (0.040)						
Α	1.27 (0.050)						

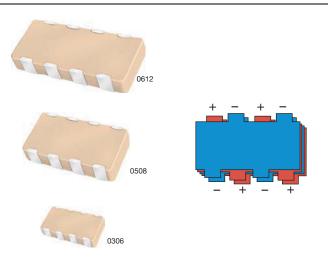
PAD LAYOUT DIMENSIONS MM (IN.)

Size	Α	В	С
LD15			
(0204)			
LD16	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)
(0306)	0.31 (0.012)	1.32 (0.000)	0.31 (0.020)
LD17	0.51 (0.020)	2.03 (0.080)	0.76 (0.030)
(0508)	0.31 (0.020)	2.03 (0.000)	0.70 (0.030)
LD18	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)
(0612)	0.70 (0.030)	3.03 (0.120)	0.033 (0.023)

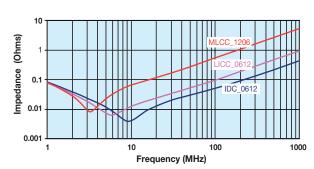
IDC Low Inductance Capacitors (RoHS)

IDC (InterDigitated Capacitors) 0306/0612/0508

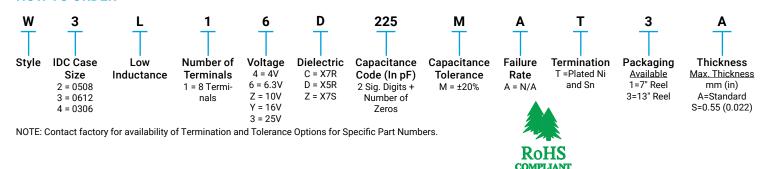
GENERAL DESCRIPTION


Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95mm or 0.55mm.

IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on 0.13µ, 90nm, 65nm, and 45nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader.


IDCs are used for board level decoupling of systems with speeds of 300MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors.

The Inter-Digitated Capacitor (IDC) technology was developed by KYOCERA AVX. This is the second family of Low Inductance MLCC products created by KYOCERA AVX. IDCs are a cost effective alternative to KYOCERA AVX's first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array).


KYOCERA AVX IDC products are available with a lead-free finish of plated Nickel/ Tin.

TYPICAL IMPEDANCE

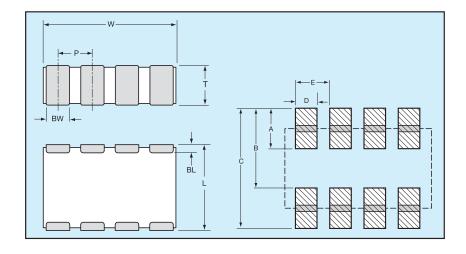
HOW TO ORDER

PERFORMANCE CHARACTERISTICS

Capacitance Tolerance	±20% Preferred
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C
Temperature Coefficient	±15% (0VDC), ±22% (X7S)
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	≤ 6.3V = 6.5% max; 10V = 5.0% max; ≥ 16V = 3.5% max
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μ F min.,whichever is less

	072022
Dissipation Factor	No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current
CTE (ppm/C)	12.0
Thermal Conductivity	4-5W/M K
Terminations Available	Plated Nickel and Solder

072522


IDC Low Inductance Capacitors (RoHS)

IDC (InterDigitated Capacitors) 0306/0612/0508

SIZE	W4 =	0306		W2 =	Thin	0508	3		W2	2 = 05	80		W	3= Tł	nin 06	12		W3	3 = 06	512		W3	= TH	ICK 0	612
Max. mm	0.	55			0.55.			0.95				0.55			0.95				1.22						
Thickness (in.)	(0.0	122)		(0.022	2)		(0.037)				(0.022)			(0.037)				(0.048)						
WVDC	4	6.3	4	6.3	10	16	25	4	6.3	10	16	25	4	6.3	10	16	4	6.3	10	16	25	4	6.3	10	16
Cap (µF) 0.010																									
0.022																									
0.033																									
0.047																									
0.068																									
0.10																									
0.22																									
0.33																									
0.47																									
0.68																									
1.0																									
1.5																									
2.2																									
3.3																									

PHYSICAL DIMENSIONS AND PAD LAYOUT

Consult factory for additional requirements

PHYSICAL CHIP DIMENSIONS

MILLIMETERS (INCHES)

SIZE	W	L	BW	BL	Р
0206	1.60 ± 0.20	0.82 ± 0.10	0.25 ± 0.10	0.20 ± 0.10	0.40 ± 0.05
0306	(0.063 ± 0.008)	(0.032 ± 0.006)	(0.010 ± 0.004)	(0.008± 0.004)	(0.015 ± 0.002)
0508	2.03 ± 0.20	1.27 ± 0.20	0.30 ± 0.10	0.25 ± 0.15	0.50 ± 0.05
0508	(0.080 ± 0.008)	(0.050 ± 0.008)	(0.012 ± 0.004)	(0.010± 0.006)	(0.020 ± 0.002)
0612	3.20 ± 0.20	1.60 ± 0.20	0.50 ± 0.10	0.25 ± 0.15	0.80 ± 0.10
0012	(0.126 ± 0.008)	(0.063 ± 0.008)	(0.020 ± 0.004)	(0.010 ± 0.006)	(0.031 ± 0.004)

PAD LAYOUT DI-MENSIONS

SIZE	Α	В	С	D	E
0306	0.38	0.89	1.27	0.20	0.40
	(0.015)	(0.035)	(0.050)	(0.008)	(0.015)
0508	0.64	1.27	1.91	0.28	0.50
	(0.025)	(0.050)	(0.075)	(0.011)	(0.020)
0612	0.89	1.65	2.54	0.45	0.80
	(0.035)	(0.065)	(0.010)	(0.018)	(0.031)

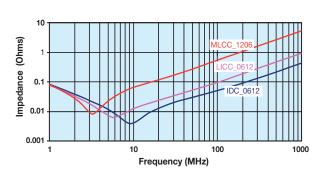
IDC Low Inductance Capacitors (SnPb)

IDC (InterDigitated Capacitors) 0306/0612/0508

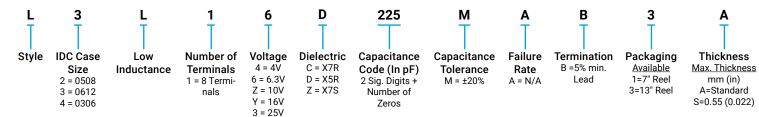
GENERAL DESCRIPTION

Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95mm or 0.55mm.

IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on 0.13µ, 90nm, 65nm, and 45nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader.


IDCs are used for board level decoupling of systems with speeds of 300MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors.

The Inter-Digitated Capacitor (IDC) technology was developed by KYOCERA AVX. This is the second family of Low Inductance MLCC products created by KYOCERA AVX. IDCs are a cost effective alternative to KYOCERA AVX's first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array).


KYOCERA AVX IDC products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues.

TYPICAL IMPEDANCE

HOW TO ORDER

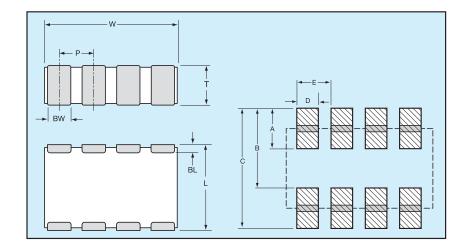
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

Not RoHS Compliant

PERFORMANCE CHARACTERISTICS

Capacitance Tolerance	±20% Preferred
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C
Temperature Coefficient	±15% (0VDC), ±22% (X7S)
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	≤ 6.3V = 6.5% max; 10V = 5.0% max; ≥ 16V = 3.5% max
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μF min.,whichever is less

Dissipation Factor	No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current
CTE (ppm/C)	12.0
Thermal Conductivity	4-5W/M K
Terminations Available	Plated Nickel and Solder


IDC Low Inductance Capacitors (SnPb)

IDC (InterDigitated Capacitors) with Sn/Pb Termination 0306/0612/0508

SIZE	W4 =	0306		W2 =	Thin	0508	3		W2	2 = 05	508		W	3= Th	nin 06	12		W3	3 = 00	512		W3	= THI	ICK 0	612
Max. mm	0.5				0.55.					0.95					.55				0.95			1.22			
Thickness (in.)	(0.0)				(0.022					(0.037			(0.022)				(0.037			(0.048)					
WVDC	4	6.3	4	6.3	10	16	25	4	6.3	10	16	25	4	6.3	10	16	4	6.3	10	16	25	4	6.3	10	16
Cap (μF) 0.010																									
0.022																									
0.033																									
0.047																									
0.068																									
0.10																									
0.22																									
0.33																									
0.47																									
0.68																									
1.0																									
1.5																									
2.2																									
3.3																									

PHYSICAL DIMENSIONS AND PAD LAYOUT

Consult factory for additional requirements

PHYSICAL CHIP DIMENSIONS

MILLIMETERS (INCHES)

l	SIZE	W	L	BW	BL	P
ĺ	0206	1.60 ± 0.20	0.82 ± 0.10	0.25 ± 0.10	0.20 ± 0.10	0.40 ± 0.05
l	0306	(0.063 ± 0.008)	(0.032 ± 0.006)	(0.010 ± 0.004)	(0.008± 0.004)	(0.015 ± 0.002)
Ī	0508	2.03 ± 0.20	1.27 ± 0.20	0.30 ± 0.10	0.25 ± 0.15	0.50 ± 0.05
	0508	(0.080 ± 0.008)	(0.050 ± 0.008)	(0.012 ± 0.004)	(0.010± 0.006)	(0.020 ± 0.002)
Ì	0612	3.20 ± 0.20	1.60 ± 0.20	0.50 ± 0.10	0.25 ± 0.15	0.80 ± 0.10
	0012	(0.126 ± 0.008)	(0.063 ± 0.008)	(0.020 ± 0.004)	(0.010 ± 0.006)	(0.031 ± 0.004)

PAD LAYOUT DI-MENSIONS

SIZE	Α	В	С	D	Е
0306	0.38 (0.015)	0.89 (0.035)	1.27 (0.050)	0.20 (0.008)	0.40 (0.015)
0508	0.64 (0.025)	1.27 (0.050)	1.91 (0.075)	0.28 (0.011)	0.50 (0.020)
0612	0.89 (0.035)	1.65 (0.065)	2.54 (0.010)	0.45 (0.018)	0.80 (0.031)

LGA Low Inductance Capacitors

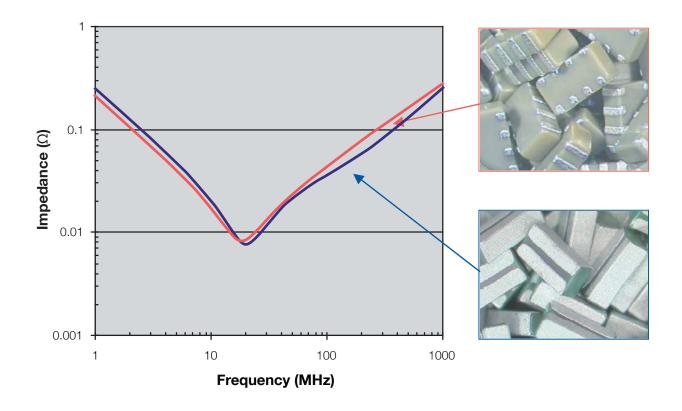
0204/0306 Land Grid Array

Land Grid Array (LGA) capacitors are the latest family of low inductance MLCCs from KYOCERA AVX. These new LGA products are the third low inductance family developed by KYOCERA AVX. The innovative LGA technology sets a new standard for low inductance MLCC performance.

Our initial 2 terminal versions of LGA technology deliver the performance of an 8 terminal IDC low inductance MLCC with a number of advantages including:

- Simplified layout of 2 large solder pads compared to 8 small pads for IDCs
- Opportunity to reduce PCB or substrate contribution to system ESL by using multiple parallel vias in solder pads
- Advanced FCT manufacturing process used to create uniformly flat terminations on the capacitor that resist "tombstoning"
- Better solder joint reliability

APPLICATIONS

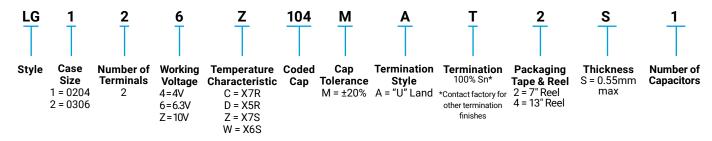

Semiconductor Packages

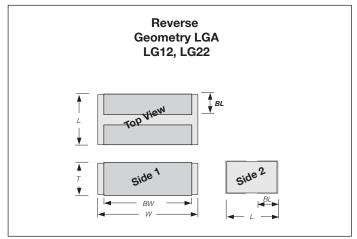
- · Microprocessors/CPUs
- Graphics Processors/GPUs
- Chipsets
- **FPGAs**
- ASICs

Board Level Device Decoupling

- · Frequencies of 300 MHz or more
- · ICs drawing 15W or more
- · Low voltages
- · High speed buses

0306 2 TERMINAL LGA COMPARISON WITH 0306 8 TERMINAL IDC


LGA Low Inductance Capacitors



SIZE		L	G12 (0204	l)		LG22 (0306)								
Length mm (in.)		0.50 (0					0.76 (0.030)								
Width mm (in.)			1.00 (0	(0.039)			1.60 (0.063)								
Temp. Char.	X5R	(D)	X78	(Z)	X6S	(W)	Х	7R (C	;)	X5R	(D)	X7S	(Z)	X6S	(W)
Working Voltage	6.3	4	6.3	4	6.3	4	10	6.3	4	6.3	4	6.3	4	6.3	4
	(6)	(4)	(6)	(4)	(6)	(4)	(Z)	(6)	(4)	(6)	(4)	(6)	(4)	(6)	(4)
Cap (µF) 0.010 (103)															
0.022 (223)															
0.047 (473)															
0.100 (104)															
0.220 (224)															
0.330 (334)															
0.470 (474)															
1.000 (105)															
2.200 (225)															
		= X7	R		= X5	R		= X7	S		= X6	S			•

HOW TO ORDER

PART DIMENSIONS

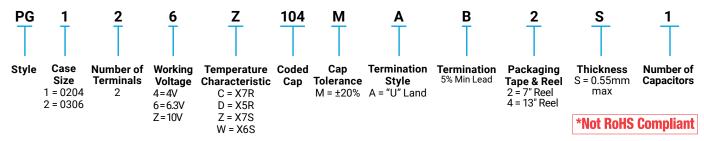
MM (INCHES)

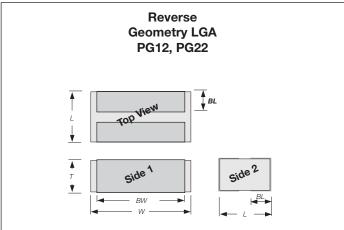
Series	L	w	Т	BW	BL
LG12 (0204)	0.5 ± 0.05	1.00 ± 0.10	0.50 ± 0.05	0.8 ± 0.10	0.13 ± 0.08
	(0.020±0.002)	(0.039 ± 0.004)	(0.020 ± 0.002)	(0.031 ± 0.004)	(0.005 ± 0.003)
LG22 (0306)	0.76 ± 0.10	1.60 ± 0.10	0.50 ± 0.05	1.50 ±0.10	0.28 ± 0.08
	(0.030 ± 0.004)	(0.063 ± 0.004)	(0.020 ± 0.002)	(0.059 ± 0.004)	(0.011 ± 0.003)

RECOMMENDED SOLDER PAD DIMENSIONS

MM (INCHES)

Series	PL	PW1	G
LG12 (0204)	0.50 (0.020)	1.00 (0.039)	0.20 (0.008)
LG22 (0306)	0.65 (0.026)	1.50 (0.059)	0.20 (0.008)


LGA Low Inductance Capacitors



0204/0306 Land Grid Array - Tin/Lead Termination "B"

SIZE		PG12 (0204)								PG2	2 (03	306)			
Length mm (in.)			0.50 (0.020))					0.7	6 (0.0	30)			
Width mm (in.)			1.00 (0.039)			1.60 (0.063)								
Temp. Char.	X5F	(D)	X78	(Z)	X6S	(W)	Х	7R (C)	X5R	(D)	X7S	(Z)	X6S	(W)
Working Voltage	6.3	4	6.3	4	6.3	4	10	6.3	4	6.3	4	6.3	4	6.3	4
	(6)	(4)	(6)	(4)	(6)	(4)	(Z)	(6)	(4)	(6)	(4)	(6)	(4)	(6)	(4)
Cap (µF) 0.010 (103)															
0.022 (223)															
0.047 (473)															
0.100 (104)															
0.220 (224)															
0.330 (334)															
0.470 (474)															
1.000 (105)															
2.200 (225)															
		= X7	R		= X5	R		= X7	S		= X6	S			

HOW TO ORDER

PART DIMENSIONS

MM (INCHES)

Series	L	W	Т	BW	BL
PG12 (0204)	0.5 ± 0.05	1.00 ± 0.10	0.50 ± 0.05	0.8 ± 0.10	0.13 ± 0.08
	(0.020±0.002)	(0.039 ± 0.004)	(0.020 ± 0.002)	(0.031 ± 0.004)	(0.005 ± 0.003)
PG22 (0306)	0.76 ± 0.10	1.60 ± 0.10	0.50 ± 0.05	1.50 ±0.10	0.28 ± 0.08
	(0.030 ± 0.004)	(0.063 ± 0.004)	(0.020 ± 0.002)	(0.059 ± 0.004)	(0.011 ± 0.003)

RECOMMENDED SOLDER PAD DIMENSIONS

MM (INCHES)

Series	PL	PW1	G
PG12 (0204)	0.50 (0.020)	1.00 (0.039)	0.20 (0.008)
PG22 (0306)	0.65 (0.026)	1.50 (0.059)	0.20 (0.008)

AT Series - 200°C & 250°C Rated

Present military specifications, as well as a majority of commercial applications, require a maximum operating temperature of 125°C. However, the emerging market for high temperature electronics demands capacitors operating reliably at temperatures beyond 125°C. KYOCERA AVX's high temperature chip capacitor product line, has been extended with the BME COG chip. All AT chips have verified capabilities of long term operation up to 250°C for applications in both military and commercial businesses. These capacitors demonstrate high volumetric efficiency, high insulation resistance and low ESR/ESL for the most demanding applications, such as "down-hole" oil exploration and aerospace programs.

HOW TO ORDER

AT10	3	Т	104	K	Α	Т	2	Α
	Τ	Τ		Т	T	Τ	T	Τ
Style	Voltage	Temperature	Capacitance Code	Capacitance	Test Level	Termination	Packaging	Special
AT03 = 0603	Code	Coefficient	(2 significant digits	Tolerance	A = Standard	1 = Pd/Ag	2 = 7" Reel	Code
AT05 = 0805	16V = Y	PME	+ no. of zeros)	$J = \pm 5\%$		T = 100% Sn Plated	4 = 13" Reel	A = Standard
AT06 = 1206	25V = 3	C0G 250°C = A	101 = 100pF	$K = \pm 10\%$		(RoHS Compliant)	9 = Bulk	
AT10 = 1210	50V = 5	COG 200°C = 2	102 = 1nF	$M = \pm 20\%$		7 = Ni/Au Plated		
AT12 = 1812		VHT 250°C = T	103 = 10nF			(For 250°C BME		
AT14 = 2225		VHT 200°C = 4	104 = 100nF			COG Only)		
		BME	105 = 1µF			**		
		C0G 250°C = 5						
		C0G 200°C = 3						

ELECTRICAL SPECIFICATIONS

Temperature Coefficient

PME COG 0±30ppm/°C, -55C to 250°C BME COG 0±30ppm/°C, -55C to 200°C

See TCC Plot for +250°C

VHT: T ±15%, -55°C to +150°C

See TCC Plot for +250°C

Capacitance Test (MIL-STD-202, Method 305) 25°C, 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz

Dissipation factor 25°C

COG: 0.15% Max at 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz VHT: 2.5% Max at 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz

Insulation Resistance 25°C (MIL-STD-202, Method 302)

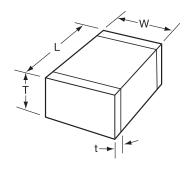
100GΩ or 1000MΩ- μ F (whichever is less)

Insulation Resistance 125°C (MIL-STD-202, Method 302)

 $10G\Omega$ or $100M\Omega$ - μF (whichever is less)

Insulation Resistance 200°C (MIL-STD-202, Method 302) 1GΩ or 10MΩ- μ F (whichever is less)

Insulation Resistance 250°C (MIL-STD-202, Method 302)

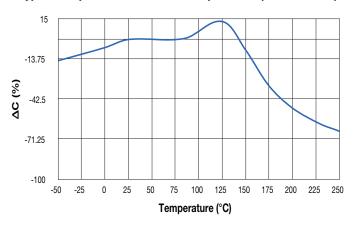

100M Ω or 1M Ω -uF (whichever is less)

Direct Withstanding Voltage 25°C (Flash Test)

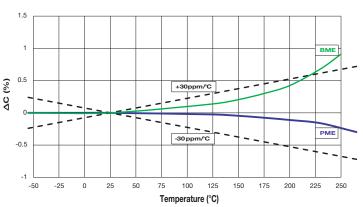
250% rated voltage for 5 seconds with 50mA max charging current

DIMENSIONS:

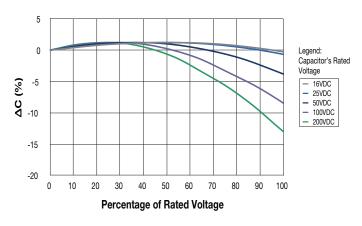
MILLIMETERS (INCHES)

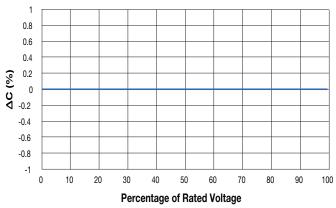

Size		AT03 = 0603	AT05= 0805	AT06=1206	AT10=1210	AT12=1812	AT14=2225
(L) Length		1.60 ± 0.15	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.50 ± 0.30	5.72 ± 0.25
(L) Lengui		(0.063 ± 0.006)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.126 ± 0.008)	(0.177 ± 0.012)	(0.225 ± 0.010)
(W) Width		0.81 ± 0.15	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	3.20 ± 0.20	6.35 ± 0.25
(vv) vvidui		(0.032 ± 0.006)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)	(0.126 ± 0.008)	(0.250 ± 0.010)
(T) Thickne	voo Mov	1.02	1.30	1.52	1.70	2.54	2.54
(1) THICKIE	SS IVIAX.	(0.040)	(0.051)	(0.060)	(0.067)	(0.100)	(0.100)
(t)	min.	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)
terminal	max.	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)

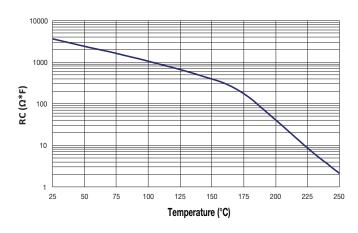
AT Series - 200°C & 250°C Rated

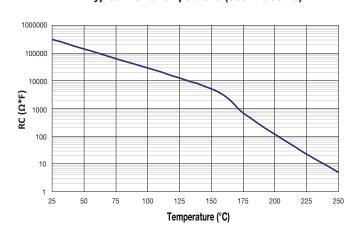


PERFORMANCE CHARACTERISTICS


Typical Temperature Coefficient of Capacitance (VHT Dielectric)

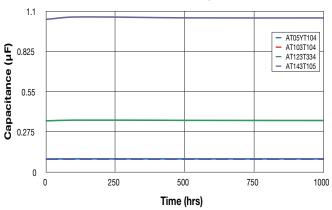

Typical Temperature Coefficient of Capacitance (COG Dielectric)


Typical Voltage Coefficient of Capacitance (VHT Dielectric)


Typical Voltage Coefficient of Capacitance (COG Dielectric)

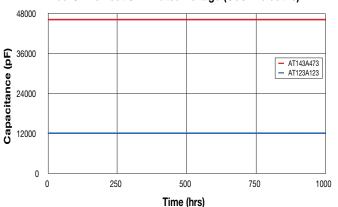
Typical RC vs Temperature (VHT Dielectric)

Typical RC vs Temperature (COG Dielectric)



AT Series - 200°C & 250°C Rated

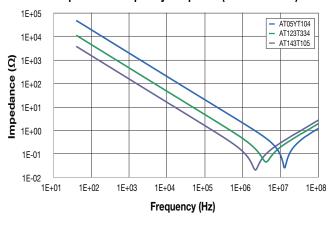
RELIABILITY



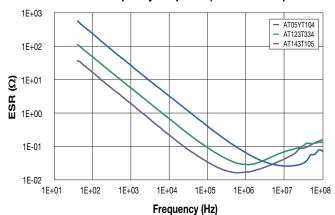
VHT - Failure Rate @ 90% Confidence Level (%/1000 hours)									
Temperature (°C)	50% Rated Voltage	100% Rated Voltage							
200	0.002	0.017							
250	0.026	0.210							

^{*}Typical 1210, 1812, 2225 Failure Rate Analysis based on 250°C testing and voltage ratings specified on the following page.

250°C Life Test @ 2x Rated Voltage (C0G Dielectric)

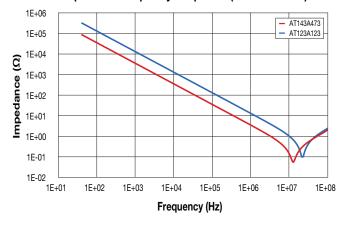


COG - Failure Rate	@ 90% Confidence Lev	vel (%/1000 hours)											
Temperature (°C)	perature (°C) 50% Rated Voltage 100% Rated Voltage												
200	0.006	0.047											
250	0.074	0.590											

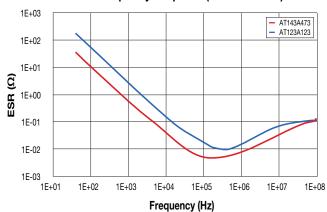

^{*}Typical 1812 and 2225 Failure Rate Analysis based on 250°C testing and voltage ratings specified on the following page.

FREQUENCY RESPONSE

Impedance Frequency Response (VHT Dielectric)



ESR Frequency Response (VHT Dielectric)



₡KY0CERa

Impedance Frequency Response (COG Dielectric)

ESR Frequency Response (COG Dielectric)

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

			emp. Coeffi AT03 =	ATO		ΔΤι	06 =	AT1	0 =	AT12 =	AT14 =
(Case S	ize	0603	-	05		206	ı	10	1812	2225
-	Solderi	na	Reflow/Wave				v/Wave	Reflov		Reflow Only	Reflow Only
		mm	1.60±0.15	2.01			±0.20	3.20		4.50±0.30	5.72±0.25
L)	Length	(in.)	(0.063±0.006)	(0.079:	±0.008)	(0.126	±0.008)	(0.126 ±	£0.008)	(0.177±0.012)	(0.225±0.010
W)	Width	mm (im.)	0.81 ± 0.15		±0.20		±0.20	2.50		3.20±0.20	6.35±0.25
,		(in.)	(0.032±0.006)	(0.049 :		_	±0.008)	(0.098±		(0.126±0.008) 2.54	(0.250±0.010
r) T	Thickness	mm (in.)	1.02 (0.040)	(0.0			52 060)	(0.0		(0.100)	(0.100)
		min	0.25(0.010)	0.25(0.010)	0.25(0		0.25(0.010)	0.25(0.010)
1) 1	Terminal	max	0.75(0.030)	0.75(0.030)	0.75(1.02 (0.040)	1.02 (0.040)
Rat	ted Tem		200	_	00		00	20		200	200
	np. Coef		4	4			4			4	4
	/oltage		25	25	50	25	50	25	50	50	50
	1000	102									
	1200	122									
	1500	152									
	1800	182									
	2200	222					-				
	2700	272					\vdash				
ap		_									
F)	3300	332						<u> </u>			
	3900	392									
	4700	472									
	5600	562									
	6800	682									
	8200	822									
	0.010	103									
	0.012	123									
	0.015	153									
	0.018	183									
	0.018	223									
	<u> </u>	<u> </u>									
	0.027	273									
	0.033	333									
	0.039	393									
	0.047	473									
	0.056	563									
	0.068	683									
	0.082	823									
ap	0.100	104									
ıF)	0.120	124									
	0.150	154									
	0.180	184					\vdash				
	0.180	224									
		_					\vdash				
	0.270	274					<u> </u>				
	0.330	334					<u> </u>		ļ		
	0.390	394									
	0.470	474					<u> </u>				
	0.560	564									
	0.680	684									
	0.820	824									
	1.000	105									
١	Voltage (V)		25	25	50	25	50	25	50	50	50
	Rated Temp. (°C)		200		00		00		00	200	200
	ated Femp. (*C)		AT03 =)5 =		06 =	AT1		AT12 =	AT14 =
(Case S	ize	0603		05 05		206	ı	10	1812	2225

	^	0'	AT03 =	AT()5 =	AT(06 =	AT1	0 =	AT12 =	AT14 =
	Case	Size	0603	08	05	12	06	12	10	1812	2225
	Solde	ring	Reflow/Wave		/Wave	Reflov	/Wave	Reflo	v Only	Reflow Only	Reflow Only
/L \ L	Length	mm	1.60±0.15	2.01:	£0.20	3.20	±0.20	3.20:	±0.20	4.50±0.30	5.72±0.25
(L) I	Length	(in.)	(0.063±0.006)		£0.008)	/· ·	±0.008)		±0.008)	(0.177±0.012)	(0.225±0.010
(W)	Width	mm	0.81 ± 0.15		±0.20		±0.20	2.50:		3.20±0.20	6.35±0.25
(…)		(in.)	(0.032±0.006)	(0.049:			±0.008)	_	±0.008)	(0.126±0.008)	(0.250±0.010
(T) 1	hickness	mm	1.02		30		52		70	2.54	2.54
` '		(in.)	(0.040))51)	_ \	060)	(0.0		(0.100)	(0.100)
(t) T	erminal	min	0.25(0.010)	0.25(0.010) 0.030)	0.25(0.25(0.010)	0.25(0.010) 1.02(0.040)
_	Rated Ter	max	0.75 (0.030) 250	0.75(50	_	50	0.75(50	1.02 (0.040) 250	250
	emp. Co		Z50		DU		-		DU	Z50 T	Z50 T
	Voltag		16	16	25	16	25	16	25	25	25
_	1000	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 	10	10	2.5	10	2.5	10	25	25	25
		102						_	_		
	1200	122									
	1500	152									
	1800	182				<u> </u>					
	2200	222									
Сар	2700	272									
(pF)	3300	332									
	3900	392									
	4700	472									
	5600	562									
	6800	682									
	8200	822									
	0.010	103									
	0.012	123									
	0.015	153									
	0.018	183									
	0.022	223									
	0.027	273									
	0.033	333									
	0.039	393									
	0.047	473									
	0.056	563									
	0.068	683									
	0.082	823									
Сар	0.100	104	İ								
μF)	0.120	124									
	0.150	154									
											
	0.180	184									
	0.220	224	-								
	0.270	274	ļ								
	0.330	334									
	0.390	394		L	L				L		
	0.470	474									
	0.560	564				İ					
	0.680	684									
	0.820	824				 		\vdash	\vdash		
		-	-			\vdash		\vdash	\vdash		
	1.000	105	46	4.5	- 0.5	4.0	0.5	16	0.5	0.5	0.5
	Voltag		16	16	25	16	25	16	25	25	25
F	Rated Ter	mp. (°C)	250		50		50		50	250	250
	Case	Size	AT03 =)5 =		06 =		0 =	AT12 =	AT14 =
	Case Size		0603	08	05	1 12	206	1 12	10	1812	2225

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

AT Series - 200°C & 250°C Rated

CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

В	ME	CO	G Ten	p. Coefficie	nt: 4	200	O°C Rated		
C	Case Si	ze	AT03	=0603		AT05	=0805	AT06:	=1206
S	Solderii	ng	Reflov	v/Wave		Reflow	//Wave	Reflow	//Wave
	Length	mm	1.60	±0.15		2.01:	±0.20		±0.20
		(in.)		±0.006)			±0.008)		±0.008)
(W)	Width	mm (in.)		±0.15 ±0.006)			±0.20 ±0.008)		± 0.20 ± 0.008)
T)T	hickness			.02			30		52
_		(in.)	(0.	040)			051))60)
t) T	erminal	min		(0.010)			0.010)	0.25(
Dot	ad Tamp	max (oc)		(0.030) 00			0.030) 00	0.75(0.030)
Kau	<u>ed Temp</u> Temp.	.(%)							
(Coefficei	nt		3		;	3	;	3
	oltage (\neg	25	50	2	.5	50	25	50
Cap	39	390							
pF)	47	470							
	56	560							
	68	680							
ļ	82	820							
ŀ	100	101							
	120	121							
	150	151							
-	180 220	181 221							
ŀ	270	271							
ı	330	331							
İ	390	391							
İ	470	471							
İ	560	561							
İ	680	681							
	820	821							
	1000	102							
	1200	122							
	1500	152							
	1800	182							
ļ	2200	222							
ŀ	2700	272							
ŀ	3300	332							
ŀ	3900 4700	392 472							
	5600	562							
i	6800	682							
ı	8200	822							
ар		103							
JF)	0.012	123							
Į	0.015	153							
	0.018	183							
	0.022	223							
	0.027	273		-					
	0.033	333		-					
	0.039	393							
	0.047	473 563			-				
	0.056	683		 					
		823							
	0.100	104							
╗	oltage (-	25	50	2	:5	50	25	50
v					_				

Case S	Size	AT03=0603	AT05=0805	AT06 = 1206
	\dashv	Reflow/Wave	Reflow/Wave	Reflow/Wave
Solde (L) Length			+	+
(L) Length	(in.)	1.60±0.15 (0.063±0.006)	2.01 ±0.20 (0.079±0.008)	3.20±0.20
(W) Width	_	0.81±0.006)	1.25±0.20	(0.126±0.008) 1.60±0.20
(vv) vviutii	(in.)	(0.032±0.006)	(0.049±0.008)	(0.063±0.008)
(T)	mm	1.02	1.30	1.52
Thickness	(in.)	(0.040)	(0.051)	(0.060)
(t)	min	0.25(0.010)	0.25(0.010)	0.25(0.010)
Terminal		0.75 (0.030)	0.75(0.030)	0.75(0.030)
Rated Ten	$\overline{}$	250	250	250
Tem				1 200
Coeffic		5	5	5
Voltage	-	25	25	25
Cap 39	390	20	20	20
white the	_			+
4/	470			
56	560			
68	680			
82	820			
100	101			
120	121			
150	151			
180	181			
220	221			
270	271			
	1			
330	331			
390	391			
470	471			
560	561			
680	681			
820	821			
1000	102			
1200	122			
1500	152			
1800	182			
2200	222			
2700	-			
	1		1	+
3300	-		-	+
3900	Н-		 	+
4700	1		-	+
5600	562		ļ	4
6800	682			
8200	822			
Cap 0.010	103			
μ ^{F)} 0.012	123			
0.015				
0.018	-			
0.022	1			1
0.022	-			+
			+	+
	333		+	+
0.039	_		 	+
0.047			-	+
0.056	563			1
0.068	683			
0.082	823			
0.100	104			
Voltage	$\overline{}$	25	25	25
Rated Ten		250	250	250
	/-	AT03=0603	AT05=0805	AT06=1206

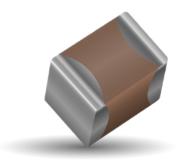
Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

AT06=1206

AT05=0805

AT03=0603

Case Size


CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

PN	1E	C0	G Temp. (Coefficient: 2	200°C Rate	ed		P	ME	COC	Temp. C	Coefficient: A	250°C Rate	ed	
C	ase S	ize	AT05 = 0805	AT06 = 1206	AT10 = 1210	AT12 = 1812	AT14 = 2225		Case S	Size	AT05 = 0805	AT06 = 1206	AT10 = 1210	AT12 = 1812	AT14 = 2225
S	olderi	na	Reflow/Wave	Reflow/Wave	Reflow Only	Reflow Only	Reflow Only		Solder	ina	Reflow/Wave	Reflow/Wave	Reflow Only	Reflow Only	Reflow Only
		mm	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.50 ± 0.30	2.75 ± 0.25			mm	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.50 ± 0.30	2.75 ± 0.25
(L) Ler	ngth	(in.)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.126 ± 0.008)	(0.177 ± 0.012)	(0.225 ± 0.010)	(L) L	Length	(in.)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.126 ± 0.008)	(0.177 ± 0.012)	(0.225 ± 0.010)
OAO ME	.Jak	mm	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	3.20 ± 0.20	6.35 ± 0.25	(140)	147: -141-	mm	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	3.20 ± 0.20	6.35 ± 0.25
(W) Wi	atn	(in.)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)	(0.126 ± 0.008)	(0.250 ± 0.010)	(vv)	Width	(in.)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)	(0.126 ± 0.008)	(0.250 ± 0.010)
(T) Thi	ckness	mm	1.30	1.52	1.70	2.54	2.54	(T) 1	Thickness	mm	1.30	1.52	1.70	2.54	2.54
(1) 1111	CKIIESS	(in.)	(0.051)	(0.060)	(0.067)	(0.100)	(0.100)	(1)	THICKHESS	(in.)	(0.051)	(0.060)	(0.067)	(0.100)	(0.100)
(t) Terr	minal	min	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	(t) T	erminal	min	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)
.,		max	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)			max	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)
_	d Temp	<u> </u>	200	200	200	200	200	_	ated Tem		250	250	250	250	250
_	p. Coef		2	2	2	2	2	Te	mp. Coe		Α	Α	Α	Α	Α
V	oltage		50	50	50	50	50		Voltage		25	25	25	25	25
	100	101							100	101					
-	120	121							120	121					
-	150	151							150	151					
	180 220	181 221							180 220	181 221			-		-
-	270	271							270	271					
	330	331							330	331					
	390	391							390	391			-		-
	470	471							470	471					
F	560	561							560	561					
F	680	681							680	681					
Can -	820	821						Cap	820	821					
Cap (pF)	1000	102						(pF)	1000	102					
1° ' E	1200	122						4 /	1200	122					
	1500	152							1500	152					
	1800	182							1800	182					
	2200	222							2200	222					
	2700	272							2700	272					
	3300	332						İ	3300	332					
	3900	392							3900	392					
	4700	472							4700	472					
1 H	5600	562							5600	562					
	6800	682							6800	682					
\rightarrow	8200	822							8200	822					
	0.010								0.010						
	0.012	123							0.012						
	0.015								0.015						
	0.018								0.018				-	 	
	0.022	223 273							0.022	223			-	-	
	0.027	333						Сар	0.027				-	 	
1(IIF) L	0.033	393						(μF)	0.033	393				-	
1 H	0.039	473							0.039	473			 	 	
. ⊢	0.047								0.047	_			 		
1 F	0.068	683							0.030				+	†	1
	0.082								0.082	_					
	0.100								0.100				 	1	1
	oltage		50	50	50	50	50		Voltage	_	25	25	25	25	25
		p. (°C)	200	200	200	200	200		ted Tem	` ′	250	250	250	250	250
_	ase S			AT06 = 1206					Case S			AT06 = 1206			
_ 0	ast 3	176	MI03 - 0003	A100 - 1200	A110 - 1210	A112 - 1012	A1 14 - 2223		Case 3	120	A103 - 0003	A100 - 1200	A110 - 1210	MI 12 - 1012	M114 - 2223

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

For 600V to 5000V Applications

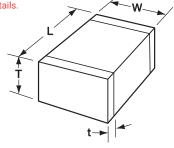
High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. KYOCERA AVX special high voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

Larger physical sizes than normally encountered chips are used to make high voltage MLC chip products. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4°C per second. The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

For 1825, 2225 and 3640 sizes, KYOCERA AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips)

NEW 630V RANGE

HOW TO ORDER


1808	Α	Α	271	М	Α	Т	2	Α
\top	T	T	T	T	T	T	T	Τ
Style	Voltage	Temperature	Capacitance	Capacitance	Test Level	Termination*	Packaging	Special
0805	C = 600V/630V	Coefficient	Code	Tolerance	A = Standard	T = Plated Ni and Sn	2 = 7" Reel**	Code
1206	A = 1000V	A = NPO(COG)	(2 significant digits	C0G: $J = \pm 5\%$		(RoHS Compliant)	4 = 13" Reel**	A = Standard
1210	S = 1500V	C = X7R ` ´	+ no. of zeros)	K = ±10%			6 = Tray (3640 Style)	
1808	G = 2000V		Examples:	$M = \pm 20\%$				
1812	W = 2500V		10 pF = 100	X7R: K = ±10%				
1825	H = 3000V		100 pF = 101	$M = \pm 20\%$				
2220	J = 4000V		1,000 pF = 102	Z = +80%,				
2225	K = 5000V		22,000 pF = 223	-20%				
3640			220,000 pF = 224					
***			1 μF = 105					

Notes:

- 1. Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.
- *Terminations with 5% minimum lead (Pb) is available, see pages 100 and 101 for LD style. Leaded terminations are available, see pages 102-106.

**The 3640 Style is not available on Reels.

^{***} KYOCERA AVX offers nonstandard chip sizes. Contact factory for details

DIMENSIONS: millimeters (inches)

SIZE	0805	1206	1210*	1808*	1812*	1825*	2220*	2225*	3640*
(L) Length	2.10 ± 0.20	3.30 ± 0.30	3.30 ± 0.40	4.60 ± 0.50	4.60 ± 0.50	4.60 ± 0.50	5.70 ± 0.50	5.70 ± 0.50	9.14 ± 0.25
(L) Longui	(0.083 ± 0.008)	(0.130 ± 0.012)	(0.130 ± 0.016)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.224 ± 0.020)	(0.224 ± 0.020)	(0.360 ± 0.010)
(W) Width	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.30	2.00 ± 0.20	3.20 ± 0.30	6.30 ± 0.40	5.00 ± 0.40	6.30 ± 0.40	10.2 ± 0.25
(vv) vvidil1	(0.049 ±0.008)	(0.063 ± 0.008)	(0.098 ± 0.012)	(0.079 ± 0.008)	(0.126 ± 0.012)	(0.248 ± 0.016)	(0.197 ± 0.016)	(0.248 ± 0.016)	(0.400 ± 0.010)
(t) terminal min.	0.50 ± 0.20	0.60 ± 0.20	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.85 ± 0.35	0.85 ± 0.35	0.76 (0.030)
max.	(0.020 ± 0.008)	(0.024 ± 0.008)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.033 ± 0.014)	(0.033 ± 0.014)	1.52 (0.060)

^{*}Reflow Soldering Only

For 600V to 5000V Applications

NPO (COG) DIELECTRIC - PERFORMANCE CHARACTERISTICS

Capacitance Range	10 pF to 0.100 µF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

NPO (COG) CAPACITANCE RANGE - PREFERRED SIZES ARE SHADED

Case		0805				1206						10							808							18					
Solde			low/V				ow/W					Reflo								w Only							Reflov				
(L) Length	mm (in.)		10 ± 0				30 + 0.				((+ 0.40					(+ 0.50						-	4.60	+ 0.50 + 0.020	۸		
W) Width	(in.) mm		85 ± 0 25 ± 0				30 + 0. +0.30/				(0.130 ·	+ 0.01 + 0.30							+ 0.02 + 0.20				_		(3.20+)		
W) Widti	(in.)		49 ± 0		(0	.063 +			14)		((0.098								+ 0.00						(· 0.30 · 0.012)		
(t) Terminal	mm		50 + 0				0.012		, .,			0.75								+ 0.35							0.75 -		,		
()	(in.)		20 + 0			(0.0)	4 + 0.0	(800			(.030 +	0.014	4)				(.030 +	0.014	4)					(.030 +	0.014)		
Voltag		600	630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	3000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Cap (pF)	.5 OR5		Α	С																											
	1.0 1R0		Α	С								<u> </u>																			
	1.2 1R2		Α	С																							_				
	1.5 1R5	A	A	C	X	X	X	X	X		_																-				
	1.8 1R8	Α	A	C	X	X	X	X	X			-								_			_				-				
	2.2 2R2 2.7 2R7	A	A	C	X	X	X	X	X		-	-				_	C	C	С	C	С	C	C				-			_	
	3.3 3R3	A	A	C	X	X	X	X	X								C	C	C	C	C	C	C							_	
	3.9 3R9	A	A	C	X	X	Ŷ	X	Ŷ			 					C	C	C	C	Č	Č	C				 			-	
	4.7 4R7	A	Â	C	X	X	X	X	X								C	C	C	C	C	C	C								
	5.6 5R6	A	A	Č	X	X	X	X	X			<u> </u>					Č	č	č	Č	č	č	Č				<u> </u>			-	
	6.8 6R8	A	A	Č	X	X	X	X	X								C	Č	Č	Č	Č	Č	Č								
	8.2 8R2	A	A	C	X	X	X	X	X								C	Č	Č	C	Č	Č	C								
	10 100	Α	Α	C	C	C	C	C	C	С	С	С	С	С	F	С	С	C	C	C	C	С	C	С	С	С	С	С	С	C	Е
	12 120	Α	Α	С	C	C	C	C	C	C	C	C	C	C	F	C	C	C	C	C	C	С	C	C	C	C	C	C	C	C	Е
	15 150	Α	Α	С	С	С	С	С	С	С	С	С	С	С	F	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Е
	18 180	Α	Α	С	С	С	С	С	С	С	С	С	С	С	F	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Е
	22 220	Α	Α	С	С	С	С	С	С	С	С	С	С	С	F	С	С	С	С	С	С	С	Е	С	С	С	С	С	С	O	Е
	27 270	Α	Α	С	С	С	С	С	С	С	С	С	С	С	F	С	С	С	С	С	С	С	Е	С	С	С	С	F	С	С	Е
	33 330	Α	Α	С	C	C	C	С	C	С	C	C	C	C	F	С	С	С	С	С	C	С	F	С	С	С	С	F	С	С	<u>E</u>
	39 390	Α	Α	С	С	С	С	С	С	С	С	С	С	С	F	С	С	С	С	С	С	С	F	С	С	С	С	F	С	С	<u>E</u>
	47 470	Α	Α	С	С	C	C	C	C	C	С	С	C	C	F	С	C	C	С	С	C	С	F	С	С	C	C	F	С	С	E
	56 560	Α	A	C	C	C	C	C	C	С	С	C	C	C	F	С	C	C	С	C	C	С		С	С	C	C	F	С	С	ᆂ
	68 680	A	A	C	C	C	C	C	C	C	С	C	C	C	F	C	C	C	C	C	C	C		C	C	C	C	F	C	С	ᆠ
	82 820 100 101	X	X	X	С	C	C	С	C	C	C	C	C	C	F	C	C	C	С	C	C F	C F		С	C	C	C	F	С	C C	F
	100 101 120 121	C	C	C	C	C	C	C E	E	C	C	C	C	C	F	C	C	C	C	C	F	F		C	C	C	C	F	C	C	G
	150 151	C	C	C	C	C	C	Ē	È	C	C	C	E	E	F	C	C	C	F	F	F	F		C	C	C	C	F	C	C	G
	180 181	C	Č	Č	č	Č	Ĕ	È	È	č	Č	Ĕ	È	È	F	č	Č	č	F	F	F	F		Č	Č	č	č	F	F	F	
	220 221	C	Č	Č	Č	Č	Ē	Ē	È	č	C	Ē	È	Ē	F	Č	Č	Č	F	F	F	F		C	Č	Č	Č	Ė	F	F	
	270 271	Č	Č	Č	Č	Č	Ē	Ē	Ē	Č	Č	Ē	Ē	Ē	Ġ	Č	F	Č	F	F	F	F		Č	Č	Č	Č	Ė	F	F	
	330 331	С	C	C	Ċ	С	Е	Е	Е	Ċ	C	Е	Е	Е		С	F	F	F	F	F	F		С	С	C	F	F	F	F	
	390 391	С	С	С	С	С	Е	Е	Е	С	С	Е	Е	Е		С	F	F	F	F	F	F		С	С	С	F	F	F	F	
	470 471	С	С		С	С	Е	Е	Е	С	С	Е	Е	Ε		С	F	F	F	F	F	F		С	С	F	F	F	F	F	
	560 561	С	С		С	С	Е			С	С	Е	Е	Е		С	F	F	F	F		F		С	С	F	F	F	F	F	
	680 681	С	С		С	С	Е			С	С	Е	Е	Е		С	F	F	F	F				С	С	F	F	F	G	G	
	750 751	С	С		Е	E	E			С	С	E	E	E		С	F	F	F	F				С	С	F	F	F	G	G	
	820 821	С	C		E	E	E			С	C	E	E	E	_	С	F	F	E	F	_	<u> </u>		С	С	<u>F</u>	F	F	G	G	
	1000 102		С	-	E	E	E	-		С	С	E	F	F		С	F	F	E	F		-	-	С	С	F	F	F	G	G	
<u> </u>	1200 122		C	_	E	E	Е			С	C	F	F	F	-	C	F	F	Е	F	-	\vdash	-	C	C	F	E F	E F	\vdash	-	
	1500 152 1800 182		C	-	E	E		-		C	C	G	G	G		E	F	-	-	F		-	-	C	C	F	G	F			
-	2200 222		C		E	E				C	C	G	-	-		E	F	F	\vdash			\vdash	\vdash	C	C	E	G	G		-	
	2700 272				Ë	E				C	C	G				È	F	F						C	C	È	G	G			
	3300 332		t		Ë	È				C	C	G				È	F	F				t		C	C	F		G			
	3900 392				Ē	Ē		İ		Č	Č	Ğ				Ē	F							Č	Č	F					
	4700 472				Е	Е				С	С					Е	F							С	С	G					
	5600 562									E	Ē					Е	F							C	С	G					
	6800 682									Е	Ε					F	F							С	С						
	8200 822									F	F						F							Е	С						
Cap (µF)	0.010 103									F	F						F							F	F						
	0.012 123		_	-	<u> </u>	1	_			F	F	_	_	_	_	<u> </u>		_		_	_	<u> </u>	_	F	F	_	_	_			
	0.015 153		-		-	-	_			G	G			_	_		_	_			_		_	G	G	_	-				
<u> </u>	0.018 183		-	\vdash	\vdash	-	_	-	\vdash	-	_	\vdash	_	-	-	_	_	-	-	_	-	\vdash	_	G	G F	_	-	-	\vdash		
<u> </u>	0.022 223 0.027 273		-	-	-	-	<u> </u>			-	<u> </u>	-		-	-		_	-			-	-	<u> </u>	<u> </u>	_	_	-	-			
——	0.027 273		\vdash	\vdash	\vdash	\vdash	\vdash	\vdash		\vdash	\vdash	\vdash	-	-	-	\vdash	\vdash	\vdash	\vdash	-	-	\vdash	\vdash	\vdash	G G	-	\vdash	\vdash		-	
	0.033 333					1								 	 			 			_				U			 			
	0.047 473																													-	
	0.068 683				†							t																			
	0.100 104																													\neg	
Voltag		600	630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	3000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Case	Size		0805				1206						10							808							18				

Letter	Α	С	Е	F	G	Х	7
Max.	0.81	1.45	1.80	2.20	2.80	0.94	3.30
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)	(0.130)

NPO (COG) CAPACITANCE RANGE - PREFERRED SIZES ARE SHADED

Case Size				18	25				2220												2225	5								3640					
Soldering				Reflo		у							flow (flow (flow C				
(L) Length mm			,	4.60		٥)							70 ± 0.									70 ± 0.									14 ± 0.				
(in.)			. (0.181 : 6.30 :		U)							24 ± 0. 00 ± 0.									24 ± 0. 30 ± 0.									60 ± 0. 0.2 ± 0.			_	
W) Width (in.)			(0.248		6)							97 ± 0.									48 ± 0.									00 ± 0.				
mm					± 0.35								85 ± 0									85 ± 0.								0.7	76 (0.0	30)			
(t) Terminal max				0.030									33 ± 0.									33 ± 0.									2 (0.0				
Voltage (V)	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000
Cap (pF) 1.5 1R5 1.8 1R8						<u> </u>																	1	_									\vdash	$\overline{}$	\vdash
2.2 2R2																																			
2.7 2R7																																			
3.3 3R3																																	\Box		
3.9 3R9								-															-	_									\vdash	\vdash	\vdash
4.7 4R7 5.6 5R6																																	\vdash	$\overline{}$	
6.8 6R8																																		\neg	
8.2 8R2																																			
10 100	Е	Е	G	Е	F	Е	F	F	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F							\Box		
12 120	E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		-		_	_		$\vdash \vdash$	ш	\vdash
15 150 18 180	E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		-		-			\vdash	$\overline{}$	Н
22 220	E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		\vdash		\vdash			\vdash	\neg	\vdash
27 270	E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F								=	
33 330	Е	Е	G	Е	F	Е	F	F	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F							口		
39 390	Е	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	Е	E	E	E	E	E	E	Е	F	F							\sqcup	لــــــ	
47 470	E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G	_	-	_	-	_		\vdash	-	G
56 560 68 680	E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G							\vdash		G
82 820	E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G									G
100 101	Е	Е	G	Е	F	Е	F	F	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	G	G				G	G	G	G	G	G
120 121	Е	Е	G	Е	F	Е	F	F	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	G	G				G	G	G	G	G	G
150 151	E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	G	G				G	G	G	G	G	G
180 181 220 221	E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	F	F	E	E	E	E	E	E	E	G	G G				G	G	G	G	G G	G
270 271	E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	-	_	E	E	E	E	E	E	E	G	G				G	G	G	G	G	G
330 331	Е	Е	G	Е	F	Е	F	F	Е	Е	Е	Е	Е	Е	Е			Е	Е	Е	Е	Е	Е	Е	G					G	G	G	G	G	G
390 391	Е	Е	G	Е	F	Е	F		Е	Е	Е	Е	Е	Е	Е			Е	Е	Е	Е	Е	Е	Е	G					G	G	G	G	G	G
470 471	E	E	G	E	F	E	F		E	E	E	E	E	E	E	_		E	E	E	E	E	E	E	G					G	G	G	G	G	G
560 561 680 681	E	E	G	E	F	E F	G		E	E	E	E	E	E F	E F		-	E	E	E	E	E	E	E	G					G	G G	G G	G	G G	G
750 751	E	E	G	E	F	F	G		E	E	E	E	E	F	F			E	E	E	E	E	E	E						G	G	G	G	G	G
820 821	Е	Е	G	Е	F	F	G		Е	Е	Е	Е	Е	F	F			Е	Е	Е	Е	Е	F	Е						G	G	G	G	G	G
1000 102	Е	Е	G	Е	F	F	G		Е	Е	Е	Е	Е	F	F			Е	Е	Е	Е	Е	Е	Е			G	G	G	G	G	G	G	G	
1200 122	E	E	G	E	F	G	G		E	E	E	Е	E	G	G			E	E	Е	E	E	F	F			G	G	G	G	G	G	G	G	\vdash
1500 152 1800 182	E	E	G	F	G	G	G		E	E	E	F	F	G	G			E	E	E	E	E	F G	F G			G G	G	G G	G	G	G	G	-	\vdash
2200 222	E	E	G	G	G	-	G		E	E	E	G	G	-				E	E	E	E	E	-	- 0			G	G	G	G	G	G	G	-	
2700 272	E	E	G	G	G		G		E	E	E	G	G					E	E	E	F	F					G	G	G	G	G	G	G		
3300 332	Е	Е	G	G	G				Е	Е	Е	G	G					Е	Е	Е	F	F					G	G	G	G	G	G			
3900 392	Е	Е	G	G	G				E	Е	Е	G	G					E	E	Е	G	G					G	G	G	G	G	G	igsquare	لب	Ш
4700 472 5600 562	E F	E F	G	G	G	-	-	-	E F	E F	E F	G G	G		-	-	_	F	F	F	G	G	-	_	-	-	G G	G	G	G	G	_	$\vdash \vdash$	-	\vdash
5600 562 6800 682	F	F	G	9	G		 	\vdash	F	F	F	6	6			 	-	F	F	F	G	G		\vdash	\vdash	-	G	G	G	G	G		$\vdash \vdash$	\dashv	\vdash
8200 822	F	F	G		G			t	G	G	G							G	G	G							G	G	G	G			\vdash	\neg	H
Cap (µF) 0.010 103	F	F	G						7	7	7							G	G	G							G	G	G	G					
0.012 123	F	F	G															G	G								G	G	G						
0.015 153	F	F				-						_				-		G	G				1		-		G	G	G		_		\longmapsto		Ш
0.018 183 0.022 223	F	F				<u> </u>	1	-		-	<u> </u>					-		G G	G G				1		-		G G	G	G G				\vdash	$\overline{}$	\vdash
0.022 223	F	F			\vdash	<u> </u>		 		<u> </u>				\vdash		<u> </u>		9	3			\vdash	 	\vdash	\vdash	<u> </u>	9	9	9		\vdash		\vdash	\vdash	H
0.033 333	F	F																G	G								G	G					\Box		М
0.039 393	G	G																																	
0.047 473	G	G																G	G								G	G					igsquare	لــــــ	\square
0.056 563	G G	G G	-	-		-	-	-	-	-	-	-		-	-	-		G G	G G	\vdash			-	_	-	-	-	-		\vdash			$\vdash \vdash$	-	$\vdash\vdash$
0.068 683 0.100 104	G	U				 	1	\vdash			<u> </u>					-	-	G	U				+	-	+			-		1			\vdash	\dashv	\vdash
Voltage (V)	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000
Case Size					25								2220									2225			-						3640				

Letter	Α	С	Е	F	G	X	7
Max.	0.81	1.45	1.80	2.20	2.80	0.94	3.30
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)	(0.130)

For 600V to 5000V Applications

X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.82 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K M Ω min. or 1000 M Ω - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

X7R CAPACITANCE RANGE - PREFERRED SIZES ARE SHADED

Case Size			0805				1206					1210						18	08			1812								
Soldering			low/W				low/W					low 0							w Only							Reflov				
	mm în.)	(0.0	10 ± 0.: 85 ± 0.	(800		(0.1	30 ± 0. 30 ± 0.	012)			(0.13	30 ± 0.4 30 ± 0.0	016)				(0.181 :	± 0.50 ± 0.020)					(4.60 ± ± 0.181)	0.020)		
	mm în.)		25 ± 0.: 49 ± 0.		(1.60 0.063	+0.30/ +0.012		l)		(0.0	50 ± 0.0 98 ± 0.0	30 012)					2.00:	± 0.20 ± 0.008						(3.20 ± ± 0.126))		
	mm max		50 ± 0.: 20 ± 0.			0.	60 ± 0. 24 ± 0.	20			0.1	75 ± 0.0 30 ± 0.0	35				(± 0.35 ± 0.014	.)						0.75 ± ± 0.030))		
Voltage (V)		600		1000	600		1000		2000	600				2000	600	630					3000	4000	600	630		1500			3000	4000
Cap (pF) 100	101	Χ	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е																
120	121	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е																
150	151	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е																
180	181	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е																
220	221	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е																
270	271	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е									Е	Е	Е	Е	Е			
330	331	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F		Е	Е	Е	Е	Е			
390	391	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F		Е	Е	Е	Е	Е			
470	471	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F		Е	Е	Е	Е	Е	E	E	
560	561	Х	Х	С	С	С	E	E	E	E	E	E	E	E	E	Е	E	E	E	F	F		E	E	E	E	E	E	E	
680	681	X	Х	С	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
750	751	X	X	С	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
820	821	X	X	С	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
1000	102	X	X	X	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
1200	122	X	X	X	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		F	F	F	F	F	F	F	
1500	152	X	X	X	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		F	F	F	F	F	G	G	
1800	182	X	X	C	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		F	F	F	F	F	G	G	
2200	222	X	X	X	С	С	E	E	E	E	E	E	F	E	E	E	E	F	F	F	Г		F	F	F	F	F	G	G	
		C	C	^	С	С	E	E	-	E	E	E	F	E	E	E	E	F	F	Г			F	F	F	F	F		G	
2700 3300	272 332	С	С		С	С	E	Е		E	E	E	F	E	E	E	E	F	F		-		F	F	F	F	F	G G	G	
	392	С	С		С	С	E			E	E	E	F	_	E	E	E	F	Г				F	F	F	F	F	G	G	
3900 4700	472	С	С		С	С	E			E	E	E	F		E	E	E	F			-		F	F	F	F	F	G	G	
		С	С		С	С	E			E	E	E	F		E	E	E	F					F	F	F		-	G	G	
5600 6800	562 682		C			-	F			E		_	F		E	_	_	F			-		F	F	F	G G	G	G		-
	822	С	С		C	C	E			E	E	E			E	E	E	-					F	F	F	G	G			
8200	103	C	C		C	C	E			E	E	E			E	E	E						F	F	F	G	G			
Cap (µF) 0.010			С			_	E				E				F	F	F						F	F	F	G	G			
0.015	153	С			E	E	E			E	_	E			F	F	F	_			-		F	F	_	G				-
0.018	183	С	С		E	E				E	E	E			- 1									F	G					
0.022	223	С	С		E	E	_			E	E	F			F	F	F				-		F	F	G					-
0.027	273				E	E				E	E					F					-		F	F	G					-
0.033	333				Е	Е				E	E				F									_	G					-
0.039	393		_				_	_		E	E				F	F		_			-		F	F	G					-
0.047	473			_		-	-			E	E				F	F	_	-	-	-	-		F	F	G		_			-
0.056	563		<u> </u>			_		<u> </u>		F	F				F	F			-	-	-		F	F						-
0.068	683		<u> </u>	_		<u> </u>	-	_		F	F		_		F	F		-	<u> </u>	<u> </u>	-		F	F		_	_			-
0.082	823									F	F										-		F	F						-
0.100	104		_	_		_				F	F						_		_	_	-		F	F			_			<u> </u>
0.150	154			_	-	<u> </u>		-	_	_						_	_		<u> </u>	<u> </u>	-		G	G			_			-
0.220	224						-									-		-			1		G	G						-
0.270	274					<u> </u>													<u> </u>	<u> </u>	-				-					-
0.330	334			_				_		_							_				<u> </u>				-		_			<u> </u>
0.390	394																				<u> </u>									ļ
0.470	474					_													_	_	1				_					_
0.560	564																													
0.680	684																													
0.820	824																													ļ
1.000	105																													
Voltage (V)		600	630	1000	600	630	1000		2000	600	630		1500	2000	600	630	1000		2000	2500	3000	4000	600	630	1000	1500		2500	3000	4000
Case Size			0805				1206					1210						18	808							18	12			

Letter	Α	С	E	F	G	Х	7
Max.	0.81	1.45	1.80	2.20	2.80	0.94	3.30
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)	(0.130)

X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

Case Size				18	25					2220 Reflow Only				2225					3640																
Soldering				Reflov		_																flow C								Re	flow C				
mm				4.60 :									0 ± 0.									70 ± 0									14 ± 0				
(L) Length (in.)			(0	.181 :	± 0.02	0)						(0.22	4 ± 0.	020)							(0.2	24 ± 0	.020)							(0.3	60 ± 0	.010)			
W) Width					± 0.40								0 ± 0.								6.3	30 ± 0	.40								0.2 ± 0				
(in.)					± 0.01	6)							7 ± 0.									48 ± 0									00 ± 0				
(t) Terminal mm max				0.75 :	± 0.35 ± 0.01	4)							5 ± 0.3 3 ± 0.0									85 ± 0 33 ± 0									76 (0.0 52 (0.0				
Voltage (V)	600	630					3000	4000	600	630	1000				3000	4000	5000	600	630	1000				3000	4000	5000	600	630	1000				3000	4000	5000
Cap (pF) 100 101																																		П	
120 121																																		П	
150 151																																		\neg	
180 181																																		\neg	
220 221																																		\vdash	
270 271																																		\Box	
330 331		1																																\neg	
390 391																																		\vdash	
470 471																																		П	
560 561		1																																\vdash	\vdash
680 681		 	\vdash													\vdash		\vdash					\vdash						\vdash					\vdash	$\vdash \vdash$
750 751		\vdash																										\vdash	\vdash	\vdash		\vdash		\vdash	$\vdash \vdash$
820 821		1													<u> </u>														\vdash					\vdash	\vdash
1000 102	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
1200 122	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
	_	-	F	F	_	_	F			F		F	F	_	-				_	_	F	F	_	<u> </u>				_	_	_	_	_	_	-	-
1500 152	F	F	F	F	F	F			F		F	F		F	G			F	F	F			F	F			G	G	G	G	G	G	G	G	G
1800 182	F	F	_		F	F	F			F		_	F	F	G			F	_		F	F	F	-			G	G	G	G	G	G	G	G	G
2200 222	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
2700 272	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
3300 332	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
3900 392	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
4700 472	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
5600 562	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
6800 682	F	F	F	G	G	G	G		F	F	F	F	F	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G	G	ш
8200 822	F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G	oxdot	ш
Cap (µF) 0.010 103	F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G	لـــــا	
0.015 153	F	F	F	G	G	G			F	F	F	G	G	G				F	F	F	G	G	G	G			G	G	G	G	G	G	G		
0.018 183	F	F	F	G	G				F	F	F	G	G	G				F	F	F	G	G	G				G	G	G	G	G	G	G		
0.022 223	F	F	F	G	G				F	F	F	G	G					F	F	F	G	G	G				G	G	G	G	G	G		, !	i l
0.027 273	F	F	F	G					F	F	F	G	G					F	F	F	G	G					G	G	G	G	G				
0.033 333	F	F	F	G					F	F	F	G						F	F	F	G	G					G	G	G	G					
0.039 393	F	F	F	G					F	F	F	G						F	F	F	G						G	G	G	G				\neg	
0.047 473	F	F	F	Р					F	F	F	G						F	F	F	G						G	G	G	G				\neg	
0.056 563	F	F	F	G					F	F	F	G						F	F	F	G						G	G	G	G				\neg	
0.068 683	F	F	G						F	F	G							F	F	F	G						G	G	G	G					
0.082 823	F	F	G						F	F	G							F	F	G							G	G						\Box	
0.100 104	F	F	G						F	F	G							F	F	G							G	G						\neg	
0.150 154	F	F							F	F	G							F	F	G							G	G						\neg	
0.220 224	F	F							F	F	G							F	F								G	G						\neg	
0.270 274	F	F							F	F								F	F								G	G						\vdash	\Box
0.330 334	F	F							F	F								F	F								G	G						\vdash	\Box
0.390 394	F	F							F	F								F	F								G	G						\vdash	
0.470 474	F	F							F	F								F	F								G	G						\vdash	\vdash
0.560 564	G	G							G	G								F	F								G	G						\vdash	\vdash
0.680 684					<u> </u>	<u> </u>	<u> </u>	<u> </u>	G	G				-				G	G		-			\vdash	\vdash									\vdash	\vdash
0.820 824		+	\vdash						-3	3		\vdash			\vdash	\vdash		G	G		 						\vdash		\vdash					\vdash	$\vdash\vdash$
1.000 105		1	\vdash		<u> </u>	<u> </u>	<u> </u>	<u> </u>		-				-	\vdash	\vdash		0	- 0		-	-	<u> </u>	-	\vdash			-	-					\vdash	$\vdash\vdash\vdash$
Voltage (V)	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000
	000	000	1000			2300	3000	1-000	300	030	1000				13000	+000	3000	300	000	1000				3000	1-000	3000	000	wo	1000	1300			3000	-000	3000
Case Size				18	∠5								2220									2225	•								3640				

Letter	A	С	Е	F	G	X	7
Max.	0.81	1.45	1.80	2.20	2.80	0.94	3.30
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)	(0.130)

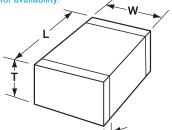
NEW 630V RANGE

KYOCERA AVX will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the KYOCERA AVX Catalog Part Number. This fulfills KYOCERA AVX's commitment to providing a full range of products to our customers. KYOCERA AVX has provided in the following pages, a full range of values that we are offering in this "B" termination.

Larger physical sizes than normally encountered chips are used to make high voltage MLC chip product. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4°C per second.

The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

For 1825, 2225 and 3640 sizes, KYOCERA AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips).


HOW TO ORDER

LD08	Α	Α	271	K	Α	В	2	Α
	Ţ	Ţ	T	T	T	Ţ	Ţ	T
Style	Voltage	Temperature	Capacitance	Capacitance	Test Level	Termination*	Packaging	Special
LD05 - 0805	600V/630V = C	Coefficient	Code	Tolerance	A = Standard	B = 5% Min Pb	2 = 7" Reel**	Code
LD06 - 1206	1000V = A	COG = A	(2 significant digits	COG: $J = \pm 5\%$	4 = Automotive*	X = FLEXITERM®	4 = 13" Reel**	A = Standard
LD10 - 1210	1500V = S	X7R = C	+ no. of zeros)	$K = \pm 10\%$		5% min. Pb*	6 = Tray (3640 Style)	
LD08 - 1808	2000V = G		Examples:	$M = \pm 20\%$				
LD12 - 1812	2500V = W		10 pF = 100	$X7R: K = \pm 10\%$				
LD13 - 1825	3000V = H		100 pF = 101	$M = \pm 20\%$				
LD20 - 2220	4000V = J		1.000 pF = 102	Z = +80%, -20%				
LD14 - 2225	5000V = K		22,000 pF = 223					
LD40 - 3640			220,000 pF = 224					
***			1 μF =105					

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

- * FLEXITERM is not available in the LD40 Style
- ** The LD40 Style is not available on Reels.
- *** KYOCERA AVX offers nonstandard chip sizes. Contact factory for details.

* Not all values are supported in Automotive grade. Please contact factory for availability

MILLIMETERS (INCHES)

NOT RoHS Compliant

DIMENSIONS

SIZE		LD05 (0805)	LD06 (1206)	LD10* (1210)	LD08* (1808)	LD12* (1812)	LD13* (1825)	LD20* (2220)	LD14* (2225)	LD40* (3640)
(L) Length		2.10 ± 0.20	3.30 ± 0.30	3.30 ± 0.40	4.60 ± 0.50	4.60 ± 0.50	4.60 ± 0.50	5.70 ± 0.50	5.70 ± 0.50	9.14 ± 0.25
(L) Length		(0.083 ± 0.008)	(0.130 ± 0.012)	(0.130 ± 0.016)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.224 ± 0.020)	(0.224 ± 0.020)	(0.360 ± 0.010)
(\A() \A(id+b		1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.30	2.00 ± 0.20	3.20 ± 0.30	6.30 ± 0.40	5.00 ± 0.40	6.30 ± 0.40	10.2 ± 0.25
(W) Width		(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.012)	(0.079 ± 0.008)	(0.126 ± 0.012)	(0.248 ± 0.016)	(0.197 ± 0.016)	(0.248 ± 0.016)	(0.400 ± 0.010)
(t) m	nin.	0.50 ± 0.20	0.60 ± 0.20	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.85 ± 0.35	0.85 ± 0.35	0.76 (0.030)
terminal m	ax.	(0.020 ± 0.008)	(0.024 ± 0.008)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.033 ± 0.014)	(0.033 ± 0.014)	1.52 (0.060)

^{*}Reflow Soldering Only

Performance of ceramic capacitors can be simulated by using the online SpiMLCC software program - http://spicat.avx.com/mlcc Custom values, ratings and configurations are also available

Tin/Lead Termination "B" - 600V to 5000V Applications

NP0 (C0G) Dielectric

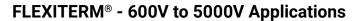
Performance Characteristics

Capacitance Range	10 pF to 0.047 μF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K M Ω min. or 100 M Ω - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE COG CAPACITANCE VALUES

VOLTA	GE	LD05 (0805)	LD06 (1206)	LD10 (1210)	LD08 (1808)	LD12 (1812)	LD13 (1825)	LD20 (2220)	LD14 (2225)	LD40 (3640)
600/630	min.	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF
000/030	max.	330 pF	1200 pF	2700 pF	3300 pF	5600 pF	0.012 μF	0.012 pF	0.018 μF	0.047 µF
1000	min.	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF
1000	max.	180 pF	560 pF	1500 pF	2200 pF	3300 pF	8200 pF	0.010 pF	0.010 μF	0.022 μF
1500	min.	_	10 pF	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	100 pF
1300	max.	-	270 pF	680 pF	820 pF	1800 pF	4700 pF	4700 pF	5600 pF	0.010 μF
2000	min.	_	10 pF	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	100 pF
2000	max.	-	120 pF	270 pF	330 pF	1000 pF	1800 pF	2200 pF	2700 pF	6800 pF
2500	min.	-	-	_	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF
2300	max.	-	-	_	180 pF	470 pF	1200 pF	1500 pF	1800 pF	3900 pF
3000	min.	_	-	_	10 pF	10 pF	10 pF	10 pF	10 pF	100 pF
3000	max.	-	-	-	120 pF	330 pF	820 pF	1000 pF	1200 pF	2700 pF
4000	min.	_	_	-	10 pF	10 pF	10 pF	10 pF	10 pF	100 pF
4000	max.	-	-	-	47 pF	150 pF	330 pF	470 pF	560 pF	1200 pF
5000	min.	_	_	_	_	_	_	10 pF	10 pF	10 pF
3000	max.	_	-	_	_	_	_	220 pF	270 pF	820 pF

X7R Dielectric


Performance Characteristics

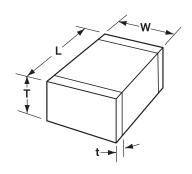
Capacitance Range	10 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES

VOLTA	IGE	0805	1206	1210	1808	1812	1825	2220	2225	3640
600/630	min.	100 pF	1000 pF	1000 pF	1000 pF	1000 pF	0.010 μF	0.010 μF	0.010 μF	0.010 μF
000/030	max.	6800 pF	0.022 μF	0.056 μF	0.068 μF	0.120 μF	0.390 μF	0.270 μF	0.330 μF	0.560 μF
1000	min.	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF	1000 pF	1000 pF	0.010 μF
1000	max.	1500 pF	6800 pF	0.015 μF	0.018 μF	0.039 µF	0.100 μF	0.120 μF	0.150 μF	0.220 μF
1500	min.	_	100 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF
1300	max.	-	2700 pF	5600 pF	6800 pF	0.015 μF	0.056 μF	0.056 μF	0.068 μF	0.100 μF
2000	min.	_	10 pF	100 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF
2000	max.	_	1500 pF	3300 pF	3300 pF	8200 pF	0.022 μF	0.027 µF	0.033 μF	0.027 µF
2500	min.	_	-	-	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF
2300	max.	_	-	_	2200 pF	5600 pF	0.015 μF	0.018 μF	0.022 μF	0.022 μF
3000	min.	-	-	_	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF
3000	max.	-	-	_	1800 pF	3900 pF	0.010 μF	0.012 μF	0.015 μF	0.018 μF
4000	min.	_	_	_	-	_	_	_	-	100 pF
4000	max.	-	-	_	-	ı	-	-	-	6800 pF
5000	min.	-	_	_	_	_	_	_	_	100 pF
3000	max.	-	-	_	_	_	_	_	_	3300 pF

High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. KYOCERA AVX special high voltage MLC chips capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/DC blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

To make high voltage chips, larger physical sizes than are normally encountered are necessary. These larger sizes require that special precautions be taken in applying these chips in surface mount assemblies. In response to this, and to follow from the success of the FLEXITERM® range of low voltage parts, KYOCERA AVX is delighted to offer a FLEXITERM® high voltage range of capacitors, FLEXITERM®.


The FLEXITERM® layer is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor, giving customers a solution where board flexure or temperature cycle damage are concerns.

HOW TO ORDER

1808	A T	<u>c</u> T	<u>272</u>	<u>K</u>	<u>A</u>	Z 	2	<u>A</u>
Style 0805 1206 1210 1808 1812 1825 2220 2225 ****	Voltage 600V/630V = C 1000V = A 1500V = S 2000V = G 2500V = W 3000V = H 4000V = J 5000V = K	Temperature Coefficient COG = A X7R = C	Capacitance Code (2 significant digits + no. of zeros) Examples: 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 μF =105	Capacitance Tolerance COG: J = ±5% K = ±10% M = ±20% X7R: K = ±10% M = ±20% Z = +80%, -20%	Test Level	Termination* Z=FLEXITERM® 100% Tin (RoHS Compliant)	Packaging 2 = 7" Reel 4 = 13" Reel	Special Code A = Standard

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

^{***} KYOCERA AVX offers nonstandard chip sizes. Contact factory for details.

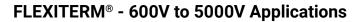
DIMENSIONS millimeters (inches)

SIZE		0805	1206	1210*	1808*	1812*	1825*	2220*	2225*
(L) Length		2.10 ± 0.20 (0.083 ± 0.008)	3.30 ± 0.30 (0.130 ± 0.012)	3.30 ± 0.40 (0.130 ± 0.016)	4.60 ± 0.50 (0.181 ± 0.020)	4.60 ± 0.50 (0.181 ± 0.020)	4.60 ± 0.50 (0.181 ± 0.020)	5.70 ± 0.50 (0.224 ± 0.020)	5.70 ± 0.50 (0.224 ± 0.020)
(W) Width		1.25 ± 0.20 (0.049 ±0.008)	$1.60^{+0.30}_{-0.10}$ $(0.063^{+0.012}_{-0.004})$	2.50 ± 0.30 (0.098 ± 0.012)	2.00 ± 0.20 (0.079 ± 0.008)	3.20 ± 0.30 (0.126 ± 0.012)	6.30 ± 0.40 (0.248 ± 0.016)	5.00 ± 0.40 (0.197 ± 0.016)	6.30 ± 0.40 (0.248 ± 0.016)
(t) terminal	min. max.	0.50 ± 0.20 (0.020 ± 0.008)	0.60 ± 0.20 (0.024 ± 0.008)	0.75 ± 0.35 (0.030 ± 0.014)	0.75 ± 0.35 (0.030 ± 0.014)	0.75 ± 0.35 (0.030 ± 0.014)	0.75 ± 0.35 (0.030 ± 0.014)	0.85 ± 0.35 (0.033 ± 0.014)	0.85 ± 0.35 (0.033 ± 0.014)

^{*}Reflow Soldering Only

Performance of SMPS capacitors can be simulated by downloading SpiCalci software program - http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available.

FLEXITERM® - 600V to 5000V Applications


NP0 (COG) Dielectric Performance Characteristics

Capacitance Range	10 pF to 0.100 μF (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

NPO (COG) CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

Case Size		0805				1206					1210						18	808					1812 Reflow Only 4.60 ± 0.50 (0.181 ± 0.020)							
Soldering		flow/W				low/W					flow 0							w Only												
(L) Length mm		.10 ± 0.:				.30 ± 0.					30 ± 0.					,		± 0.50									`			
(III.)		083 ± 0.0 0.25 ± 0.0		-		30 ± 0. ± 0.30/			┢		30 ± 0. 50 ± 0.			_		(± 0.020 ± 0.20)			-		(3.20 ±)		-	
W) Width (in.)		149 ± 0.		i (0.063			4)	i		98 ± 0.			i		(± 0.20	3)					(0.126)			
(t) Terminal mm	0	.50 ± 0.:	20	T '	0.	.60 ± 0.	20	-,			75 ± 0.							± 0.35				ì			0.75 ±		,			
IIIdX		20 ± 0.				24 ± 0.					30 ± 0.							± 0.014							$0.030 \pm$					
Voltage (V)	600		1000	600	630	1000	1500		600	630	1000	1500	2000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	
Cap (pF) 1.5 1R5	A	Α		X	X	X	X	X			_						_	_	_			<u> </u>		_					\vdash	
1.8 1R8		A		X	X	X	X	X																						
2.2 2R2	A A	A		X	X	X	X	X								С				С		-	-	-						
2.7 2R7 3.3 3R3	7 A 8 A	A		X	X	X	X	X	_		-					C	C	C	C	C		-		-			-		\vdash	
3.9 3R9	A	A		X	X	X X	X	X	_		1			-	-	C	C	C	C	C		 	 	1			-			
4.7 4R7	7 A	A		X	-	 	X	X								C	C	C	C	С		-	-					_		
5.6 5R6	A	A		X	X	X	X	X								C	Č	C	C	C		 								
6.8 6R8	8 A	Α		X	X	X	X	X								C	C	C	C	C		i								
8.2 8R2	Α	Α		Х	X	X	Х	X								С	C	C	C	C		1								
10 100	Α	Α	Α	Х	Х	Х	Х	Х	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Е	
12 120	Α	Α	Α	Х	Х	Х	Х	Х	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Е	
15 150	Α	Α	Α	Х	Х	Х	Χ	Х	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Е	
18 180		Α	Α	Х	Х	Х	Χ	Х	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Е	
22 220) A	Α	Α	Х	Х	Х	Х	Х	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Е	
27 270) A	A	Α	Х	X	X	X	X	C	С	C	C	С	С	С	C	C	С	С	C	C	С	C	C	С	C	C	С	E	
33 330	A	A	Α	X	X	X	D	D	С	С	С	С	С	С	С	С	C	С	С	С	С	С	С	С	С	С	C	С	E	
39 390		A	A	X	X	X	D	D D	С	C	C	C	С	С	С	C	С	C	C	C	C	С	С	C	C	С	C	C	E	
47 470 56 560) A	A	A	X	X	M	D C	C	C	C	C	C	C	С	C	C	C	C	C	C	U	C	C	C	C	C	C	C	F	
68 680	A	A	A	X	X	M	C	C	C	C	C	C	C	C	С	C	C	C	C	C		C	C	C	С	C	C	C	F	
82 820	X	X	X	X	X	C	C	C	C	C	C	C	C	C	C	C	c	C	C	C		C	C	C	C	C	C	С	F	
100 101	X	X	X	X	X	C	C	Č	Č	C	C	C	C	C	C	C	C	C	F	F		Č	C	C	C	C	C	C	F	
120 121		С	С	Х	Х	С	Е	Е	С	С	С	С	С	С	С	С	С	С	F	F		С	С	С	С	С	С	С	G	
150 151		С	С	Х	Х	С	Е	Е	С	С	С	Е	Е	С	С	С	F	F	F	F		С	С	С	С	С	С	С	G	
180 181	С	С	С	Х	Х	Е	Е	Е	С	С	Е	Е	Е	С	С	С	F	F	F	F		C C C C C F F C C C C C F F					F			
220 221		С		Х	Х	Е	Е	Е	С	С	Е	Е	Е	С	С	С	F	F	F	F		С	С	С	С		F	F		
270 271		С		С	С	Е	Е	E	С	С	Е	Е	Е	С	С	С	F	F	F	F		С	С	С	С	С	F	F		
330 331	С	С		С	С	Е	Е	Е	С	С	Е	Е	Е	С	С	F	F	F	F	F		С	С	С	F	F	F	F		
390 391		С		С	С	E	E	E	С	С	Е	E	E	С	С	F	F	F	F	F		С	С	C	F	F	F	F		
470 471	C	C		C	C	E	Е	E	C	C	E	E	E	С	C	F	F	F	F	F		C	C	F	F	F	F	F		
560 561 680 681	C	C	_	C	C	E			C	C	E	F	F	C	C	F	-	-	_			C	C	-	-	-	G	G		
750 751	C	C		F	F	E			C	C	E	Ē	Ē	C	C	F	F	F				C	C	F	F	F	G	G	\vdash	
820 821	C	C		Ē	Ē	Ē		1	C	C	Ē	Ē	Ē	C	C	F	Ē	Ē				C	C	F	F	F	G	G		
1000 102	2			Ē	E	Ē			C	C	E	F	F	С	С	F	Ē	E				C	C	F	F	F	G	G		
1200 122	2			Е	Е				С	С	Е	F	F	Е	Е	F	Е	Е				С	С	F	Е	Е				
1500 152	2			Е	Е				С	С	F	G	G	Е	Е	F						С	С	F	F	F				
1800 182	2			Е	Е				С	С	G	G	G	Е	Е	F						С	С	F	F	F				
2200 222	2			Е	Е				С	С	G			Е	Е							С	С	Е	G	G			\sqcup	
2700 272	1	_	_	Е	E		_	_	С	С	G		\vdash	E	Е		_	-	_	_	_	С	С	E	G	G			\sqcup	
3300 332	1	1		Е	Е			-	С	С	G			E F	E		-	-	-		-	С	С	F			1	-	$\vdash \vdash$	
3900 392 4700 472	-	-			-	-		-	C	C	G			E	E		-	-	-		-	C	C	G			-		$\vdash\vdash$	
5600 562	 	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	 	F	F	-			F	E		\vdash	\vdash	1	\vdash		C	C	G			\vdash	-	\vdash	
6800 682	-	 		\vdash		 		 	E	E				F	F			 	 			C	C				 		\vdash	
8200 822		\vdash		\vdash					F	F												E	Ē						\Box	
Cap (µF) 0.010 103	3				i –	1			F	F												E	E		<u> </u>	<u> </u>	1		П	
0.012 123		 		\vdash	<u> </u>				F	F												F	F						\vdash	
	1	\vdash		\vdash	 	 	\vdash	 	G	G			\vdash	_	-		-	1	1	\vdash	-	G	G				 		\vdash	
	}—	├	_	├	-	-		-	G	G	-	_		 	<u> </u>	_	-	-	-		-		_	-	_	_	-	-	$\vdash\vdash$	
0.018 183	4—	₩		⊢	-	-	<u> </u>	-	├		<u> </u>						_	<u> </u>	<u> </u>	<u> </u>		G	G				-		$\vdash \vdash$	
0.022 223	3	_							<u> </u>				$oxed{oxed}$						L			<u> </u>							Ш	
0.033 333	3								$oxed{oxed}$													\Box							Ш	
0.047 473	3																													
0.056 563	3				i –	1			i			<u> </u>				<u> </u>						i –	i –		<u> </u>	<u> </u>	1		П	
0.068 683		1		 	 	<u> </u>			t													 	 				<u> </u>		\vdash	
0.100 104	1—	\vdash		\vdash	 	 	\vdash	 	\vdash								 		 	\vdash		\vdash	\vdash				 		\vdash	
Voltage (V)	600	630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	
	000		1000	000	1 000			1 2000	000	000	1210	1300	2000	000	000	1000			2000	3000	1-1000	000	1 000	1000			12300	3000	1-1000	
Case Size		0805				1206					1210						18	808							18	12				

072122

NPO (COG) CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

Case Size					1	825								2220)					2225 Reflow Only 5.70 ± 0.50									
Soldering					Refle	ow Only	у						R	eflow (Only														
I (I) I engin	nm					± 0.50								.70 ± 0															
(11	n.)					± 0.02				-				224 ± 0									224 ± 0						
(W) Width	nm) ± 0.40								.00 ± 0									.30 ± 0						
	n.) nm					± 0.01				-				.85 ± 0									248 ± 0						
I (T) Terminai	nax					± 0.01								033 ± 0								0	.85 ± C	.35					
Voltage (V)		600	630	1000			2500	3000	4000	600	630	1000				3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000		
	1R5																												
	1R8																						-			igwdown			
	2R2 2R7									<u> </u>																$\vdash \vdash \vdash$			
	3R3									┢																$\vdash \vdash$			
	3R9																												
	4R7																												
	5R6																						-			igwdown			
	6R8 8R2									-																$\vdash\vdash$			
	100	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		
	120	Ē	ш	Ē	E	Ē	E	E	E	E	Ē	E	Ē	Ē	E	E	E	E	E	E	Ē	E	Ē	E	E	F	F		
	150	Е	Ε	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		
	180	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		
	220 270	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		
	330	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		
	390	E	E	E	E	E	E	E	Е	E	E	E	Е	Е	E	E	E	E	E	E	E	E	E	E	E	F	F		
	470	Е	Е	Е	Е	Е	Е	Е	F	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	G		
	560	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G		
	680 820	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G G		
	101	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	G	G		
	121	Ē	Ė	Ē	Ē	Ē	Ē	Ē	F	Ē	Ē	Ē	E	Ē	Ē	Ē	Ē	Ē	Ē	E	Ē	Ē	Ē	Ē	Ē	G	G		
150	151	Е	Е	Е	Е	Е	Е	Е	F	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	G	G		
	181	Е	Е	Е	Е	Е	Е	Е	F	Е	Е	E	Е	Е	Е	Е	F	F	Е	Е	Е	Е	Е	Е	Е	G	G		
	221 271	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	F	F	E	E	E	E	E	E	E	G	G G		
	331	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E			E	E	E	E	E	E	E	G	G		
	391	Ē	Ė	Ē	Ē	Ē	Ē	Ē		Ē	Ē	Ē	E	Ē	Ē	Ē			Ē	E	Ē	Ē	Ē	Ē	Ē	G			
	471	Е	Е	Е	Е	Е	Е	Е		Е	Е	Е	Е	Е	Е	Е			Е	Е	Е	Е	Е	Е	Е	G			
	561	E	E	E	E	E	E	E		E	E	E	E	E	E	E			E	E	E	E	E	E	E	G			
	681 751	E	E	E	E	E	F	F		E	E	E	E	E	F	F			E	E	E	E	E	E	E	$\vdash\vdash\vdash$			
	821	E	E	E	E	E	F	F		E	E	E	E	E	F	F			E	E	E	E	E	F	E	\vdash			
	102	Ē	Ē	Ē	Ē	Ē	F	F		E	Ē	Ē	E	E	F	F			Ē	E	Ē	Ē	Ē	E	Ē				
	122	Е	Е	Е	Е	Е	G	G		Е	Е	Е	Е	Е	G	G			Е	Е	Е	Е	Е	F	F				
	152	E	Е	E	F	F	G	G		E	E	E	F	F	G	G	<u> </u>		E	E	E	E	E	F	F	$\vdash \vdash$			
	182 222	E	E	E	F G	F G	G	G		E	E	E	F G	F G	G	G			E	E	E	E	E	G	G	$\vdash \vdash \vdash$			
	272	E	E	E	G	G				E	E	E	G	G					E	E	E	F	F			М			
	332	Ē	ш	E	G	G				E	Ē	E	G	G					Е	E	Е	F	F						
	392	Е	Е	Е	G	G				Е	Е	Е	G	G					Е	Е	Е	G	G						
	472	E	E	E	G	G				E	E	E	G	G					F	F	F	G	G			$\vdash \vdash$			
	562 682	F	F	F	G	G		-	-	F	F	F				 			F	F	F	G	G			$\vdash\vdash\vdash$			
	822	G	G	G						G	G	G							G	G	G	- 0				Н			
	103																		G	G	G		L						
	123																		G	G	G					\Box			
0.015	$\overline{}$							<u> </u>		<u> </u>		<u> </u>				<u> </u>			G	G	G	_	-			$\vdash \vdash$			
0.018	183 223					-				-	-	-				-			G	G	G		-			$\vdash \vdash$			
0.022 0.033										\vdash									G G	G G	G G	-	1			$\vdash\vdash\vdash$			
0.047										t									G	G	G					М			
0.056																			G	G	G								
0.068																			G	G	G					\Box			
0.100 Voltage (V)	104	600	620	1000	1500	2000	2500	2000	4000	600	620	1000	1500	2000	2500	2000	4000	5000	G 600	G 620	1000	1500	2000	2500	2000	4000	5000		
Case Size		000	030	1000		825	_ Z3UU	13000	4000	000	030	1000	1300	2220		3000	4000	3000	000	030	1000	1300	222 5		3000	4000	3000		

Letter	Α	С	E	F	G	X
Max.	0.81	1.45	1.80	2.20	2.80	0.94
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)

X7R Dielectric

Performance Characteristics

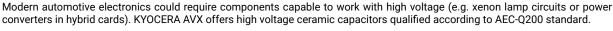
Capacitance Range	10 pF to 0.82 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

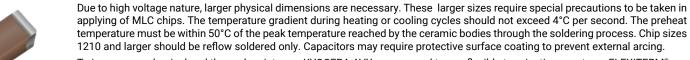
			0805				1206	,				1210						18	808				1812 Reflow Only										
			low/W	ave		Ref	low/W	/ave			Re	flow 0	nly					Reflo	w Only							Reflov	v Only						
() . 3.	mm (in.)		10 ± 0.2 83 ± 0.0				.30 ± 0. 30 ± 0.					30 ± 0.4 30 ± 0.0					(± 0.50 ± 0.020	1)						4.60 ±	£ 0.50 £ 0.020)					
VAV. VAVi alaba T	mm (in.)	1.	25 ± 0.2 49 ± 0.0	20			+0.30/	-0.10	``		2.	50 ± 0.3 98 ± 0.0	30					2.00	± 0.20 ± 0.008							3.20							
	nm		50 ± 0.2		<u> </u>	0.	.60 ± 0.	20	•)	 		75 ± 0.3						0.75	± 0.35				 			0.75							
	max		20 ± 0.0		600	(0.0	24 ± 0.		2000	600		30 ± 0.0		2000	600	620	11000	0.030	± 0.014)	Lanno	1000	600	1 620			0.014		2000	4000			
Voltage (V) Cap (pF) 100	101	X	630 X	C	600 C	C	1000 F	1500 E	2000 E	600 E	630 F	1000 E	1500 F	2000 F	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000			
120	121	X	Х	С	С	С	E	E	E	E	E	E	E	E																\vdash			
150	151	X	Х	С	C	С	E	E	E	E	E	E	E	E																\vdash			
180	181	X	Х	С	С	C	E	E	E	E	E	E	E	E																\vdash			
220	221	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е																М			
270	271	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е									Е	Е	Е	Е	Е			\Box			
330	331	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F		Е	Е	Е	Е	Е						
390	391	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F		Е	Е	Е	Е	Е						
470	471	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F		Е	Е	Е	Е	Е	Е	Е				
560	561	Х	Χ	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	Е	Е				
680	681	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	F	F				
750	751	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	F	F				
820	821	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	F	F				
1000	102	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	F	F				
1200	122	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		F	F	F	F	F	F	F				
1500	152	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		F	F	F	F	F	G	G				
1800	182	Х	Χ		С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		F	F	F	F	F	G	G				
2200	222	Х	Χ		С	С	Е	Е	Е	Е	Е	Е	F	Е	Е	Е	Е	F	F	F			F	F	F	F	F	G	G				
2700	272	Х	Х		С	С	Е	Е		Е	Е	Е	F	Е	Е	Е	Е	F	F				F	F	F	F	F	G	G				
3300	332	Х	Х		С	С	Е			Е	Е	Е	F	Е	Е	Е	Е	F	F				F	F	F	F	F	G	G				
3900	392	Х	Х		С	С	E			E	E	E	G		E	E	E	F					F	F	F	F	F	G	G	-			
4700	472	X	Х		С	С	E			E	E	E	G		E	E	E	F					F	F	F	F	F	G	G	├ ─			
5600	562	X	X		C	C	E			E E	E	E E	G		E E	E	E	F		-			F	F	F	G	G			 			
6800 8200	682 822	X	X		C	С	E			E	E	E			E	E	E	ь		-			F	F	E	G G	G G			┢			
Cap (µF) 0.010	103	C	C		С	С	E			E	E	E			E	E	E						F	F	F	G	G			\vdash			
0.015	153	С	С		E	E	E			E	E	E			F	F	F						F	F	F	G	-			H			
0.018	183	С	С		E	E	_			E	E	E			F	F	F						F	F	G					\vdash			
0.022	223	С	С		E	E				E	E	E			F	F	F						F	F	G					\vdash			
0.027	273				Е	Е				Е	Е				F	F							F	F	G								
0.033	333				Е	Е				Е	Е				F	F							F	F	G								
0.039	393									Е	Е				F	F							F	F	G								
0.047	473									Е	Е				F	F							F	F	G								
0.056	563									F	F				F	F							F	F									
0.068	683									F	F				F	F							F	F									
0.082	823									F	F												F	F									
0.100	104									F	F												F	F									
0.150	154									<u> </u>													G	G						L'			
0.220	224					<u> </u>				<u> </u>											1		G	G						<u> </u>			
0.270	274					1	_																_	_						<u> </u>			
0.330	334					1	-			-											-			-									
0.390	394					-	-			-											-			-		-							
0.470	474					-	-							\vdash							-			-		-				 			
0.560	564	-			<u> </u>	-	-			 	-				<u> </u>	-	-	-	1	1	-		 	-	1	-	-			-			
0.680	684 824			-		├	\vdash		-	_			-								-		_	 		-				\vdash			
1.000	105	<u> </u>			 	\vdash	1			 				\vdash	<u> </u>			 	-	-	1	\vdash	 	1	-								
Voltage (V)		600	630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000			
Case Size			0805				1206					1210							08								12						

X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

Case Size				18									2220									2225					3640 Reflow Only									
Soldering				Reflov									low 0									flow C														
(L) Length mm (in.)				4.60 ± 0.181	£ 0.50 0.020))							70 0.5 24 0.0									70 ± 0 24 ± 0									.14 ± 0 360 ± 0					
mm				6.30 ±									00 0.4									30 ± 0									.72 ± 0					
W) Width (in.)					0.016	6)						(0.1	97 0.0	16)								48 ± 0								(0.:	225 ± 0	.010)				
(t) Terminal mm				0.75 ±									85 0.3									35 ± 0									76 (0.0					
IIIdX	600	620			0.01		Ianno	14000	600	620	1000		3 ± 0.		Ianno	14000	LEOOO	600	620	11000			0.014)	Ianno	14000	LEOOO	600	620	1000		.52 (0.0	2500	Lanno	14000	LEOOO	
Cap (pF) 100 101	000	030	1000	1300	2000	2300	3000	4000	000	030	1000	1300	2000	2300	3000	4000	3000	000	030	1000	1300	2000	2300	3000	4000	3000	000	030	1000	1300	2000	2300	3000	4000	3000	
120 121									_																										\vdash	
150 151																																			\vdash	
180 181																																			\vdash	
220 221																																				
270 271																																			\vdash	
330 331																																			\vdash	
390 391																								Ĭ												
470 471																																				
560 561																																				
680 681		\Box						Ш															oxdot													
750 751								\Box																												
820 821																																				
1000 102	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G	
1200 122	F	F	F	F	F	F	F	Ш	F	F	F	F	F	F	G		$oxed{oxed}$	F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G	
1500 152	F	F	F	F	F	F	F	Ш	F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G	
1800 182	F	F	F	F	F	F	F	ш	F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G	
2200 222	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F	_		G	G	G	G	G	G	G	G	G	
2700 272	F	F	F	F	F	F	F	\Box	F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G	
3300 332	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F	_		G	G	G	G	G	G	G	G	G	
3900 392	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F	_		G	G	G	G	G	G	G	G		
4700 472	F	F	F	F	F	F	F	ш	F	F	F	F	F	F	G			F	F	F	F	F	F	F	_		G	G	G	G	G	G	G	G		
5600 562	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G		
6800 682	F	F	F	G	G	G	G		F	F	F	F	F	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G	G	_	
8200 822	F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G	_		G	G	G	G	G	G	G		<u> </u>	
Cap (µF) 0.010 103	F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G	_		G	G	G	G	G	G	G	_	<u> </u>	
0.015 153	F	F	F	G	G	G			F	F	F	G	G	G				F	F	F	G	G	G	G			G	G	G	G	G	G	G		₩.	
0.018 183	F	F	F	G	G				F	F	F	G	G	G				F	F	F	G	G	G				G	G	G	G	G	G	G		<u> </u>	
0.022 223	F	F	F	G	G				F	F	F	G	G					F	F	F	G	G	G				G	G	G	G	G	G				
0.027 273	F	F	F	G					F	F	F	G	G					F	F	F	G	G					G	G	G	G	G					
0.033 333	F	F	F	G					F	F	F	G						F	F	F	G	G					G	G	G	G						
0.039 393	F	F	F	G					F	F	F	G					$oxed{oxed}$	F	F	F	G			<u> </u>			G	G	G	G					<u> </u>	
0.047 473	F	F	F	Р					F	F	F	G					$oxed{oxed}$	F	F	F	G			<u> </u>			G	G	G	G					<u> </u>	
0.056 563	F	F	F	G				$oxed{oxed}$	F	F	F	G						F	F	F	G						G	G	G	G						
0.068 683	F	F	G					$oxed{oxed}$	F	F	G							F	F	F	G						G	G	G	G						
0.082 823	F	F	G						F	F	G							F	F	G							G	G								
0.100 104	F	F	G						F	F	G							F	F	G							G	G								
0.150 154	F	F							F	F	G							F	F	G							G	G								
0.220 224	F	F			$oxed{oxed}$			Ш	F	F	G						oxdot	F	F								G	G							$oxedsymbol{oxed}$	
0.270 274	F	F					_	Ш	F	F								F	F								G	G							<u> </u>	
0.330 334	F	F			$oxed{\Box}$		_	\square	F	F							$oxed{oxed}$	F	F				$oxed{oxed}$	_	_		G	G							<u> </u>	
0.390 394	F	F					_		F	F				_			$oxed{\Box}$	F	F				<u> </u>	└			G	G		_			_		└	
0.470 474	F	F						\square	F	F							igsquare	F	F				<u> </u>	1			G	G		<u> </u>					<u> </u>	
0.560 564	G	G			_	_	<u> </u>	\sqcup	G	G			_	<u> </u>				F	F	_			<u> </u>	₩	<u> </u>		G	G		<u> </u>	<u> </u>		<u> </u>		<u> </u>	
0.680 684		_				<u> </u>	-	\vdash	G	G				<u> </u>	_	<u> </u>	\vdash	G	G	_	<u> </u>	_	-	₩	-	<u> </u>	⊢	<u> </u>	<u> </u>	-	<u> </u>		-	_	 	
0.820 824						<u> </u>	-	\vdash	G	G				<u> </u>		<u> </u>	\vdash	G	G	_	-	_	-	-	_	-	⊢	-	-	-	-		-	_	 	
1.000 105	600	620	1000	1500	2000	2500	2000	4000	G 600	G 620	1000	1500	2000	2500	2000	4000	EOOC	G 600	G 620	1000	1500	2000	2500	2000	4000	ECOC	600	620	1000	1500	2000	2500	2000	4000	ECOC	
Voltage (V) Case Size	000	630	1000	1500		2500	13000	14000	DUU	030	1000		2220 2220		13000	14000	0000	600	630	1000		2225		13000	14000	1 2000	600	630	1000	1500	3640	2500	3000	4000	12000	
Case Size				16	_ J								U									4443							_		3040					


Letter	А	С	Е	F	G	Р	Х
Max.	0.81	1.45	1.80	2.20	2.80	3.10	0.94
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.120)	(0.037)

High Voltage MLC Chip Capacitors

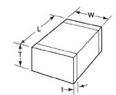

KYOCERa

For 600V to 3000V Automotive Applications - AEC-Q200

High value, low leakage and small size are diffocult parameters to obtain in cpacitors for high voltage systems. KYOCERA AVX special hgih voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

To improve mechanical and thermal resistance, KYOCERA AVX recommend to use flexible terminations system - FLEXITERM®.

HOW TO ORDER


1210	С	C	223	K	4	T	2	Α
Size	Voltage	Dielectric	Capacitance	Capacitance	Failure Rate	Terminations	Packaging	Special Code
1206	C = 630V	X7R = C	Code	Tolerance	4 = Automotive	T = Plated Ni and Sn	2 = 7" Reel	A = Std. Product
1210	A = 1000V		2 Sig. Digits +	K = ±10%		Z = FLEXITERM®	4 = 13" Reel	
1808	S = 1500V		Number of Zeros	$M = \pm 20\%$				
1812	G = 2000V		e.g. 103 = 10nF					
2220	W = 2500V		(223 = 22nF)					
	H = 3000V		` ,					

^{*}KYOCERA AVX offers nonstandard case size. Contact factory for details.

Notes: Capacitors with X7R dielectrics are not indeded for applications across AC supply mains or AC line filtering with polarity reversal. Please contact KYOCERA AVX for recommendations

CHIP DIMENSIONS DESCRIPTION

(SEE CAPACITANCE RANGE CHART ON PAGE 128)

L = Length W = Width T = Thickness t = Terminal

X7R DIELECTRIC PERFORMANCE CHARACTERISTICS

Parameter/Test	Specification Limits	Measuring Conditions
Operating Temperature Range	-55°C to +125°C	Temperature Cycle Chamber
Capacitance	within specified tolerance	Freq.: 1kHz ±10%
Dissipation Factor	2.5% max.	Voltage: 1.0Vrm s ±0.2Vrms
Capacitance Tolerance	±5% (J), ±10% (K), ±20% (M)	T = +25°C, V = 0Vdc
Temperature Characteristics	X7R = ±15%	Vdc = 0V, T = (-55°C to +125°C)
	100GΩ min. or 1000MΩ • μF min. (whichever is less)	T = +25°C, V = 500Vdc
Insulation Resistance	10GΩ min. or 1000MΩ • μ F min. (whichever is less)	T = +125°C, V = 500Vdc
	TOOL TIME OF TOOMILE AT TIME (WINGHEVER TO 1600)	(t ≥ 120 sec, l ≤ 50mA)
Dielectric Strength	No breakdown or visual defect	120% of rated voltage
Dielectric Strength	140 bicardown of visual defect	t ≤ 5 sec, l ≤ 50mA

High Voltage MLC Chips FLEXITERM®

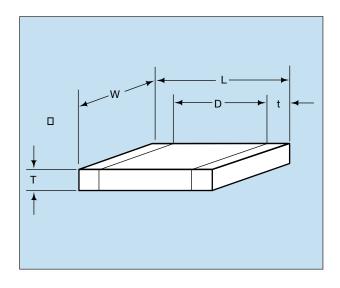
For 600V to 3000V Automotive Applications - AEC-Q200

X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

Case Siz	e			1206				12	10				18	08					18	312					2220		
Solderin	g			low/W				Reflow		е			Reflov							w Only			Reflow Only				
(L) Length	mm		-	.2 ± 0.	_				± 0.2				4.57 :							± 0.3					5.7 ± 0.		
(L) Length	(in.)			26 ± 0.			(0	0.126		8)			(0.18 :)			((± 0.01	2)				24 ± 0		
W) Width	mm			.6 ± 0.					± 0.2			2.03 ± 0.25		3.2 ± 0.2				5 ± 0.4									
W) Wider	(in.)			53 ± 0.			(0	0.098 ±		8)		(0.08 ± 0.01)		(0.126 ± 0.008)							97 ± 0.						
(t) Terminal	mm			5 ± 0.2					0.25			4.	0.61 :							± 0.36					64 ± 0.		
``	max)2 ± 0.				(0.02 ±					0.024 :							± 0.01					25 ± 0.		
Voltage (630			2000		630	1000	1500	2000	630	1000	1500	2000	2500	3000	630	1000	1500	2000	2500	3000	630	1000	1500	2000	3000
Cap (pF) 101	100	С	E	E	E	E																					
121	120	С	Е	Е	E	E																					
151	150	С	Е	Е	E	E																					
181	180	С	E	Е	E	E																					
221	220	С	E	E	E	E		_	_	_	E	E	E	E	E	E											
271	270	С	E	E	E	E	E	E	E	E	E	E	E	E	E	E				<u> </u>							
331	330	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	E										
391	390	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	E	_	_	-	_	-					
471 561	470 560	C	E	E	E	E	E	Е	E	E	E	E	E	E	F	F	E	E	E	E	E	E				-	
681	680	C	E	E	E	E	E	E	E	E	E	E	E F	E F	F	F	E	E	E	E	E F	E F	 	-	 	-	+
821	820	C	E	E	E	E	E	E	E	E	E	E	F	F	F	F	E	E	E	E	F	F	 		-		-
102	1000	C	E	E	E	E	E	E	E	E	E	E	F	F	F	F	E	E	E	E	F	F	F	F	F	F	G
102	1220	С	E	E	E		E	E	E	E							F	F	F	F	G		F	F	F	F	G
152	1500	С	E	E	E		E	E	E	E	 						F	F	F	F	G		F	F	F	F	G
182	1800	С	E	E	_		E	E	E	E							F	F	F	F	G		F	F	F	F	G
222	2200	C	E	E			E	E	E	E	-						F	F	F	F	G		F	F	F	F	G
272	2700	C	E	E			E	E	E	E							F	F	F	F			F	F	F	F	
332	3300	C	E				E	E	Е	E							F	F	F	F			F	F	F	F	
392	3900	C	E				E	E	Е								F	F	F	F			F	F	F	F	
472	4700	С	Е				Е	Е	Е								F	F	G	G			F	F	F	F	
562	5600	С	Е				Е	Е	Е								F	F	G	G			F	F	F	F	
682	6800	Е	Е				Е	Е									F	F	G	G			F	F	F	F	
822	8200	Е					Е	Е									F	F	G	G			F	F	G	G	
103	0.01	Е					Е	Е									F	F	G				G	G	G	G	
123	0.012						Е	Е									F	F	G				G	G	G	G	
							E	Е									F	F	G				G	G	G	G	
	0.018					-	E	Е									F	F					G	G	G	G	
	0.022						E				<u> </u>						F _	F		-			G	G	G	G	
	0.027						Q				-						F						G	G			
393	0.033																F						G G	G			
473											-						F						G	G			
563	0.047																Г						G	G			
683	0.030		_							_							_			\vdash		 	G	G		 	
823	0.082										l												G	G			
104	0.002																						G	G			
124	0.12																						G				
154	0.15																						G				
224	0.22																										
334	0.33																										
474	0.47																										
684	0.68				<u> </u>	<u> </u>																					<u> </u>
105	1					L					L						<u> </u>						L				ļ
155	1.5										<u> </u>						<u> </u>						<u> </u>	<u> </u>		<u> </u>	1
225	2.2				-	-					<u> </u>						<u> </u>		<u> </u>				<u> </u>				-
335	3.3										├						<u> </u>						<u> </u>				
475	4.7				-	-					 						<u> </u>			-		-	<u> </u>		-		-
106 226	10 22				-						 					-	<u> </u>			-			 				-
WVDC	22	620	1000	1500	2000	2500	620	1000	1500	2000	620	1000	1500	2000	2500	3000	620	1000	1500	2000	2500	3000	620	1000	1500	2000	3000
Size		030	1000	1206		12300	030		1000	12000	030	1000		08	2300	13000	030	1000		12000 12	12300	13000	030	1000	2220		13000
Size				1200				12	10				10	J0					10	114					2220		

NOTE: Contact factory for non-specified capacitance values

Letter	Α	С	E	F	G	Q
Max	0.81	1.45	1.80	2.20	2.80	1.78
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.070)



Part Number Example CDR01 thru CDR06

S

M

MILITARY DESIGNATION PER MIL-PRF-55681

В

Part Number Example CDR01 BP 101 MIL Style

Voltage-temperature Limits

Capacitance Rated Voltage

Capacitance Tolerance

Termination Finish

Failure Rate

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

MIL Style: CDR01, CDR02, CDR03, CDR04, CDR05,

CDR06

Voltage Temperature Limits:

BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with rated voltage from -55°C to +125°C

BX = $\pm 15\%$ without voltage; $\pm 15 - 25\%$ with rated voltage from $\pm 55\%$ to +125°C

Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF

Rated Voltage: A = 50V, B = 100V

Capacitance Tolerance: J ± 5%, K ± 10%, M ± 20%

Termination Finish:

M = Palladium silver

N = Silver-nickel-gold

S = Solder coated final with a minimum of 4 percent lead

T = Silver

Base metallization-barrier metal-solder coated (tin/lead alloy, with a minimum of 4 percent lead)

W = Base metallization-barrier metal-tinned (tin or tin/lead alloy)

Y = Base metallization-barrier metal-tin (100 percent)

Z = Base metallization-barrier metal-tinned (tin/lead alloy, with a minimum of 4 percent lead)

*See MIL-PRF-55681 Specification for more details

M = 1.0%, P = .1%, R = .01%, Failure Rate Level:

S = .001%

Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request.

*Not RoHS Compliant

CROSS REFERENCE: MIL-PRF-55681/CDR01 THRU CDR06*

Per	Carala	Length (L)	Width (W)	Thickr	ness (T)		D	Termination Band (t)		
MIL-PRF-55681	Style			Min.	Max.	Min.	Max.	Min.	Max.	
CDR01	0805	.080 ± .015	.050 ± .015	.022	.055	.030	_	.010	-	
CDR02	1805	.180 ± .015	.050 ± .015	.022	.055	_	_	.010	.030	
CDR03	1808	.180 ± .015	.080 ± .018	.022	.080	_	_	.010	.030	
CDR04	1812	.180 ± .015	.125 ± .015	.022	.080	_	_	.010	.030	
CDR05	1825	.180 ⁺ .020 015	+.020 .250 ₀₁₅	.020	.080	_	_	.010	.030	
CDR06	2225	.225 ± .020	.250 ± .020	.020	.080	_	_	.010	.030	

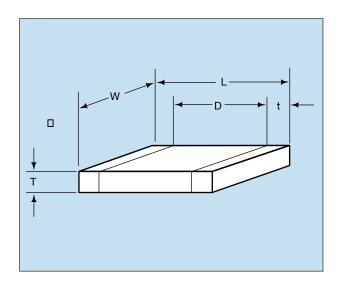
*For CDR11, 12, 13, and 14 see KYOCERA AVX Microwave Chip Capacitor Catalog

Military Part Number Identification CDR01 thru CDR06

CDR01 thru CDR06 to MIL-PRF-55681

Military Type Designation	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage-temperature limits	WVDC	Mili Des
Style 0805/CDF	201	l	tomporatare imme	L	Style
CDR01BP100B	10	J,K	BP	100	CDR0
CDR01BP120B	12	J	BP	100	CDR0
CDR01BP150B	15	J,K	BP	100	CDR0
CDR01BP180B	18	J	BP	100	CDR0
CDR01BP220B	22	J,K	BP	100	CDR0
CDR01BP270B	27	J	BP	100	CDR0
CDR01BP330B	33	J,K	BP	100	CDR0
CDR01BP390B	39	J	BP BP	100	CDRO
CDR01BP470B	47	J,K	BP	100	CDRO
CDR01BP560B	56	J	BP BP	100	CDRO
CDR01BP680B	68	J,K	BP	100	CDRO
CDR01BP820B	82	J	BP	100	CDRO
	100	J,K	BP		CDR0
CDR01BP101B				100 100	CDR0
CDR01B121B	120	J,K	BP,BX		CDRO
CDR01B151B	150	J,K	BP,BX	100	CDRO
CDR01B181B	180	J,K	BP,BX	100	CDRO
CDR01BX221B	220	K,M	BX	100	
CDR01BX271B	270	K	BX	100	Style
CDR01BX331B	330	K,M	BX	100	CDR0
CDR01BX391B	390	K	BX	100	CDR0
CDR01BX471B	470	K,M	BX	100	CDR0
CDR01BX561B	560	K	BX	100	CDR0
CDR01BX681B	680	K,M	BX	100	CDR0
CDR01BX821B	820	K	BX	100	CDR0
CDR01BX102B	1000	K,M	BX	100	CDR0
CDR01BX122B	1200	K	BX	100	CDR0
CDR01BX152B	1500	K,M	BX	100	CDR0
CDR01BX182B	1800	K	BX	100	CDR0
CDR01BX222B	2200	K,M	BX	100	CDR0
CDR01BX272B	2700	K	BX	100	CDR0
CDR01BX332B	3300	K,M	BX	100	CDR0
CDR01BX392A	3900	K	BX	50	CDR0
CDR01BX472A	4700	K,M	BX	50	Style
Style 1805/CDF					CDR0
CDR02BP221B	220	J,K	BP	100	CDR0
CDR02BP271B	270	J	BP	100	CDR0
CDR02BX392B	3900	K	BX	100	CDR0
CDR02BX472B	4700	K,M	BX	100	CDR0
CDR02BX562B	5600	K	BX	100	CDR0
CDR02BX682B	6800	K,M	BX	100	CDR0
CDR02BX822B	8200	K	BX	100	CDR0
CDR02BX103B	10,000	K,M	BX	100	CDR0
CDR02BX123A	12,000	K	BX	50	CDRO
CDR02BX153A	15,000	K,M	BX	50	CDRO
CDR02BX183A	18,000	K	BX	50	Style
CDR02BX223A	22,000	K,M	BX	50	CDR0
III			,		CDR0
	- Add appropriat	e failure rate			CDRO
	- / au appropriat	.c randic rate			CDRO
	- Add appropriat	e termination f	inish		CDR0

Military Type Designation/	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
Style 1808/CDF	203		temperature iimits	
CDR03BP331B	330	J.K	BP	100
CDR03BP391B	390	J	BP	100
CDR03BP471B	470	J,K	BP	100
CDR03BP561B	560	J	BP	100
CDR03BP681B	680	J,K	BP	100
CDR03BP821B	820	J	BP BP	100
CDR03BP102B	1000	J,K	BP	100
CDR03BX123B	12,000	K	BX	100
CDR03BX153B	15.000	K,M	BX	100
CDR03BX183B	18.000	K	BX	100
CDR03BX223B	22,000	K,M	BX	100
CDR03BX273B	27.000	K	BX	100
CDR03BX333B	33.000	K,M	BX	100
CDR03BX393A	39.000	K	BX	50
CDR03BX473A	47.000	K,M	BX	50
CDR03BX563A	56.000	K	BX	50
CDR03BX683A	68.000	K,M	BX	50
Style 1812/CDF		,		
CDR04BP122B	1200	J	BP	100
CDR04BP152B	1500	J,K	BP	100
CDR04BP182B	1800	J	BP	100
CDR04BP222B	2200	J,K	BP	100
CDR04BP272B	2700	J	BP BP	100
CDR04BP332B	3300	J,K	BP	100
CDR04BX393B	39.000	K	BX	100
CDR04BX473B	47.000	K,M	BX	100
CDR04BX563B	56.000	K	BX	100
CDR04BX823A	82.000	K	BX	50
CDR04BX104A	100,000	K,M	BX	50
CDR04BX124A	120,000	K	BX	50
CDR04BX154A	150.000	K,M	BX	50
CDR04BX184A	180.000	K	BX	50
Style 1825/CDF	R05			
CDR05BP392B	3900	J,K	BP	100
CDR05BP472B	4700	J,K	BP	100
CDR05BP562B	5600	J,K	BP	100
CDR05BX683B	68,000	K,M	BX	100
CDR05BX823B	82,000	K	BX	100
CDR05BX104B	100,000	K,M	BX	100
CDR05BX124B	120,000	K	BX	100
CDR05BX154B	150.000	K,M	BX	100
CDR05BX224A	220.000	K,M	BX	50
CDR05BX274A	270,000	K	BX	50
CDR05BX334A	330,000	K,M	BX	50
Style 2225/CDF				
CDR06BP682B	6800	J,K	BP	100
CDR06BP822B	8200	J,K	BP	100
CDR06BP103B	10,000	J,K	BP	100
CDR06BX394A	390.000	K	BX	50
CDR06BX474A	470.000	K,M	BX	50


Add appropriate failure rate

Add appropriate termination finish

Capacitance Tolerance

Part Number Example CDR31 thru CDR35

MILITARY DESIGNATION PER MIL-PRF-55681

Part Number Example (example) CDR31 BP 101 В Κ S M MIL Style Voltage-Temperature Limits Capacitance Rated Voltage Capacitance Tolerance **Termination Finish** Failure Rate

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

MIL Style: CDR31, CDR32, CDR33, CDR34, CDR35

Voltage-Temperature Limits:

BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with rated voltage from -55°C to +125°C

BX = $\pm 15\%$ without voltage; $\pm 15 - 25\%$ with rated voltage from -55°C to +125°C

Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF

Rated Voltage: A = 50V, B = 100V

Capacitance Tolerance: B \pm .10 pF, C \pm .25 pF, D \pm .5

pF, F ± 1%, J ± 5%, K ± 10%,

M ± 20%

Termination Finish:

M = Palladium silver

N = Silver-nickel-gold

Solder coated final with a minimum of 4 percent lead S =

U = Base metallization-barrier metal-solder coated (tin/lead alloy, with a minimum of 4 percent lead)

W = Base metallization-barrier metal-tinned (tin or tin/lead alloy)

Y = Base metallization-barrier metal-tin (100 percent)

Z = Base metallization-barrier metal-tinned (tin/lead alloy, with a minimum of 4 percent lead)

*See MIL-PRF-55681 Specification for more details

M = 1.0%, P = .1%, R = .01%, Failure Rate Level:

S = .001%

Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request.

*Not RoHS Compliant

CROSS REFERENCE: MIL-PRF-55681/CDR31 THRU CDR35

Per MIL-PRF-55681	Style	Length (L)	Width (W)	Thickness (T)	D	Termination Band (t)		
Pel WIL-PRF-55001	Style	(mm)	(mm)	Max. (mm)	Max. (mm)	Min. (mm)	Max. (mm)	
CDR31	0805	2.00	1.25	1.3	.50	.70	.30	
CDR32	1206	3.20	1.60	1.3	-	.70	.30	
CDR33	1210	3.20	2.50	1.5	_	.70	.30	
CDR34	1812	4.50	3.20	1.5	_	.70	.30	
CDR35	1825	4.50	6.40	1.5	_	.70	.30	

CDR31 to MIL-PRF-55681/7

Military Type Designation 1/	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
Style 0805/0	DR31 (BP)			
CDR31BP1R0B	1.0	B,C	BP	100
CDR31BP1R1B	1.1	B,C	BP	100
CDR31BP1R2B	1.2	B,C	BP	100
CDR31BP1R3B	1.3	B,C	BP	100
CDR31BP1R5B	1.5	B,C	BP	100
CDR31BP1R6B	1.6	B,C	BP	100
CDR31BP1R8B	1.8	B,C	BP	100
CDR31BP2R0B	2.0	B,C	BP	100
CDR31BP2R2B	2.2	B,C	BP	100
CDR31BP2R4B	2.4	B,C	BP	100
CDR31BP2R7B	2.7	B,C,D	BP	100
CDR31BP3R0B	3.0	B,C,D	BP	100
CDR31BP3R3B	3.3	B,C,D	BP	100
CDR31BP3R6B	3.6	B,C,D	BP	100
CDR31BP3R9B	3.9	B,C,D	BP	100
CDR31BP4R3B	4.3	B,C,D	BP	100
CDR31BP4R7B	4.7	B,C,D	BP	100
CDR31BP5R1B	5.1	B,C,D	BP	100
CDR31BP5R6B	5.6	B,C,D	BP	100
CDR31BP6R2B	6.2	B,C,D	BP	100
CDR31BP6R8B	6.8	B,C,D	BP	100
CDR31BP7R5B	7.5	B,C,D	BP	100
CDR31BP8R2B	8.2	B,C,D	BP	100
CDR31BP9R1B	9.1	B,C,D	BP	100
CDR31BP100B	10	FJ,K	BP	100
CDR31BP110B	11	FJ,K	BP	100
CDR31BP120B	12	FJ,K	BP	100
CDR31BP130B	13	FJ,K	BP	100
CDR31BP150B	15	FJ,K	BP	100
CDR31BP160B	16	FJ,K	BP	100
CDR31BP180B	18	FJ,K	BP	100
CDR31BP200B	20	F,J,K	BP	100
CDR31BP220B	22	FJ,K	BP	100
CDR31BP240B	24	F,J,K	BP	100
CDR31BP270B	27	FJ,K	BP	100
CDR31BP300B	30	FJ,K	BP	100
CDR31BP330B	33	F,J,K	BP	100
CDR31BP360B	36	FJ,K	BP	100
CDR31BP390B	39	F,J,K	BP	100
CDR31BP430B	43	FJ,K	BP	100
CDR31BP470B	47	FJ,K	BP	100
CDR31BP510B	51	F,J,K	BP	100
CDR31BP560B	56	FJ,K	BP	100
CDR31BP620B	62	F,J,K	BP	100
CDR31BP680B	68	FJ,K	BP	100
CDR31BP750B	75	FJ,K	BP	100
CDR31BP820B	82	F,J,K	BP	100
CDR31BP910B	91	FJ,K	BP	100

_ Add	appropria	te failu	re rate	
– Add	appropria	te term	ination	finish
Can	acitanca T	olerano		

Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
Style 0805/C	DR31 (BP)	cont'd		
CDR31BP101B	100	F,J,K	BP	100
CDR31BP111B	110	F,J,K	BP	100
CDR31BP121B	120	F,J,K	BP	100
CDR31BP131B	130	F,J,K	BP	100
CDR31BP151B	150	F,J,K	BP	100
CDR31BP161B	160	F,J,K	BP	100
CDR31BP181B	180	F,J,K	BP	100
CDR31BP201B	200	F,J,K	BP	100
CDR31BP221B	220	F,J,K	BP	100
CDR31BP241B	240	F,J,K	BP	100
CDR31BP271B	270	F,J,K	BP	100
CDR31BP301B	300	F,J,K	BP	100
CDR31BP331B	330	F,J,K	BP	100
CDR31BP361B	360	F,J,K	BP	100
CDR31BP391B	390	F,J,K	BP	100
CDR31BP431B	430	F,J,K	BP	100
CDR31BP471B	470	F,J,K	BP	100
CDR31BP511A	510	F,J,K	BP	50
CDR31BP561A	560	F,J,K	BP	50
CDR31BP621A	620	F,J,K	BP	50
CDR31BP681A	680	F,J,K	BP	50
Style 0805/0	DR31 (BX)			
CDR31BX471B	470	K,M	BX	100
CDR31BX561B	560	K,M	BX	100
CDR31BX681B	680	K,M	BX	100
CDR31BX821B	820	K,M	BX	100
CDR31BX102B	1,000	K,M	BX	100
CDR31BX122B	1,200	K,M	BX	100
CDR31BX152B	1,500	K,M	BX	100
CDR31BX182B	1,800	K,M	BX	100
CDR31BX222B	2,200	K,M	BX	100
CDR31BX272B	2,700	K,M	BX	100
CDR31BX332B	3,300	K,M	BX	100
CDR31BX392B	3,900	K,M	BX	100
CDR31BX472B	4,700	K,M	BX	100
CDR31BX562A	5,600	K,M	BX	50
CDR31BX682A	6,800	K,M	BX	50
CDR31BX822A	8,200	K,M	BX	50
CDR31BX103A	10,000	K,M	BX	50
CDR31BX123A	12,000	K,M	BX	50
CDR31BX153A	15.000	K,M	BX	50
CDR31BX183A	18.000	K,M	BX	50

Add appropriate failure rate Add appropriate termination finish Capacitance Tolerance

^{1/} The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

CDR32 to MIL-PRF-55681/8

Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance Tolerance	Rated temperature and Voltage- Temperature Limits	WVDC
Style 1206/0	DR32 (BP)			
CDR32BP1R0B— CDR32BP1R1B— CDR32BP1R3B— CDR32BP1R5B— CDR32BP1R6B— CDR32BP1R8B— CDR32BP2R0B— CDR32BP2R2B— CDR32BP2R4B— CDR32BP2R4B— CDR32BP2R7B— CDR32BP3R0B— CDR32BP3R0B— CDR32BP3R0B— CDR32BP3R0B— CDR32BP3R3B— CDR32BP3R3B— CDR32BP3R6B— CDR32BP3R6B— CDR32BP3R6B—	1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3	B,C B,C B,C B,C B,C B,C B,C B,C B,C,D B,C,D B,C,D B,C,D B,C,D	BP BP BP BP BP BP BP BP BP BP BP	100 100 100 100 100 100 100 100 100 100
CDR32BP4R3B CDR32BP5R1B CDR32BP5R6B CDR32BP6R2B CDR32BP7R5B CDR32BP7R5B CDR32BP9R1B CDR32BP10B CDR32BP110B CDR32BP120B CDR32BP130B CDR32BP130B CDR32BP130B CDR32BP130B CDR32BP130B	4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 10 11 12	B,C,D B,C,D B,C,D B,C,D B,C,D B,C,D B,C,D B,C,D FJ,K FJ,K FJ,K	BP BP BP BP BP BP BP BP BP	100 100 100 100 100 100 100 100 100 100
CDR32BP150B— CDR32BP160B— CDR32BP180B— CDR32BP200B— CDR32BP220B— CDR32BP240B— CDR32BP240B— CDR32BP270B— CDR32BP300B—	15 16 18 20 22 24 27 30	FJ,K FJ,K FJ,K FJ,K FJ,K FJ,K FJ,K	BP BP BP BP BP BP BP	100 100 100 100 100 100 100
CDR32BP330B CDR32BP360B CDR32BP430B CDR32BP470B CDR32BP510B CDR32BP560B CDR32BP620B CDR32BP680B CDR32BP750B CDR32BP820B CDR32BP910B	33 36 39 43 47 51 56 62 68 75 82 91	EJ'K EJ'K EJ'K EJ'K EJ'K EJ'K EJ'K	BP BP BP BP BP BP BP BP BP BP	100 100 100 100 100 100 100 100 100 100

	91	FJ.K	BP	1
L	- Add appropriat	e failure rate		
L	- Add appropriat	e termination f	nish	
	- Capacitance To	olerance		

KF-3308 I/6			T	
Military Type Designation $\underline{1}$ /	Capacitance in pF	Capacitance Tolerance	Rated Temperature and Voltage- Temperature Limits	WVDC
Style 1206/0	DR32 (BP)	cont'd		
CDR32BP101B	100	FJ,K	BP	100
CDR32BP111B	110	FJ,K	BP	100
CDR32BP121B	120	FJ,K	BP	100
CDR32BP131B	130	FJ,K	BP	100
CDR32BP151B	150	FJ,K	BP	100
CDR32BP161B	160	FJ,K	BP	100
CDR32BP181B	180	F,J,K	BP	100
CDR32BP201B	200	FJ,K	BP	100
CDR32BP221B	220	F,J,K	BP	100
CDR32BP241B	240	FJ,K	BP	100
CDR32BP271B	270	FJ,K	BP	100
CDR32BP301B	300	F,J,K	BP	100
CDR32BP331B CDR32BP361B	330 360	FJ,K	BP BP	100 100
CDR32BP301B	390	F,J,K FJ,K	BP BP	100
	430	FJ,K	BP BP	
CDR32BP431B CDR32BP471B	430 470	FJ,K F,J,K	BP BP	100 100
CDR32BP471B	510	FJ,K	BP BP	100
CDR32BP561B	560	F,J,K	BP BP	100
CDR32BP621B	620	FJ,K	BP	100
CDR32BP681B	680	FJ.K	BP BP	100
CDR32BP751B	750	F,J,K	BP BP	100
CDR32BP821B	820	FJ,K	BP BP	100
CDR32BP911B	910	F,J,K	BP	100
CDR32BP102B	1,000	FJ,K	BP	100
CDR32BP112A	1,100	FJ.K	BP	50
CDR32BP122A	1,200	F,J,K	BP	50
CDR32BP132A	1,300	FJ,K	BP	50
CDR32BP152A	1,500	F,J,K	BP	50
CDR32BP162A	1,600	FJ,K	BP	50
CDR32BP182A	1,800	FJ,K	BP	50
CDR32BP202A	2,000	F,J,K	BP	50
CDR32BP222A	2,200	FJ,K	BP	50
Style 1206/0	DR32 (BX)		1	
CDR32BX472B	4,700	K,M	BX	100
CDR32BX562B	5,600	K,M	BX	100
CDR32BX682B	6,800	K,M	BX	100
CDR32BX822B	8,200	K,M	BX	100
CDR32BX103B	10,000	K,M	BX	100
CDR32BX123B	12,000	K,M	BX	100
CDR32BX153B	15.000	K,M	BX	100
CDR32BX183A	18.000	K,M	BX	50
CDR32BX223A	22,000	K,M	BX	50
CDR32BX273A	27,000	K,M	BX	50
CDR32BX333A	33.000	K,M	BX	50
CDR32BX393A	39.000	K,M	BX	50

Add appropriate failure rate Add appropriate termination finish

Capacitance Tolerance

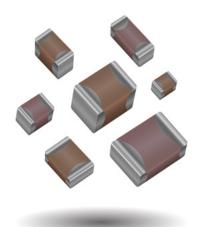
^{1/} The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

CDR33/34/35 to MIL-PRF-55681/9/10/11

Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
Style 1210/0	DR33 (BP)			
CDR33BP102B— CDR33BP112B— CDR33BP132B— CDR33BP152B— CDR33BP152B— CDR33BP162B— CDR33BP182B— CDR33BP202B— CDR33BP202B— CDR33BP224A— CDR33BP242A— CDR33BP302A— CDR33BP302A— CDR33BP302A—	1,000 1,100 1,200 1,300 1,500 1,600 1,800 2,000 2,200 2,400 2,700 3,000 3,300	E),K E),K E),K E),K E),K E),K E),K E),K	BP BP BP BP BP BP BP BP BP	100 100 100 100 100 100 100 100 100 50 50 50
Style 1210/C	<u> </u>			
CDR33BX153B— CDR33BX183B— CDR33BX223B— CDR33BX273B— CDR33BX393A— CDR33BX473A— CDR33BX563A— CDR33BX683A— CDR33BX683A— CDR33BX823A— CDR33BX823A— CDR33BX8104A—	15.000 18.000 22,000 27.000 39.000 47.000 56.000 68.000 82,000 100,000	K,M K,M K,M K,M K,M K,M K,M K,M	BX BX BX BX BX BX BX BX BX BX BX	100 100 100 100 50 50 50 50 50
Style 1812/0	DR34 (BP)			
CDR34BP222B— CDR34BP242B— CDR34BP302B— CDR34BP302B— CDR34BP362B— CDR34BP392B— CDR34BP472B— CDR34BP472B— CDR34BP512A— CDR34BP562A— CDR34BP622A— CDR34BP682A— CDR34BP752A— CDR34BP82A— CDR34BP82A— CDR34BP82A— CDR34BP812A— CDR34BP912A— CDR34BP912A— CDR34BP912A— CDR34BP9103A—	2,200 2,400 2,700 3,000 3,300 3,600 3,900 4,300 4,700 5,100 5,600 6,200 6,800 7,500 8,200 9,100	E7'K E7'K E7'K E7'K E7'K E7'K E7'K E7'K	BP BP BP BP BP BP BP BP BP BP	100 100 100 100 100 100 100 100 50 50 50 50 50 50

L	Add appropriate failure rate
	Add appropriate termination finish
	Canacitance Tolerance

Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
Style 1812/0	DR34 (BX)			
CDR34BX273B CDR34BX333B CDR34BX393B CDR34BX473B CDR34BX563B CDR34BX104A CDR34BX124A CDR34BX154A CDR34BX184A	27.000 33.000 39.000 47.000 56.000 100,000 120,000 150.000 180.000	K,M K,M K,M K,M K,M K,M K,M	BX BX BX BX BX BX BX BX BX	100 100 100 100 100 50 50 50 50
Style 1825/0	DR35 (BP)			
CDR35BP472B— CDR35BP562B— CDR35BP62B— CDR35BP62B— CDR35BP682B— CDR35BP722B— CDR35BP912B— CDR35BP912B— CDR35BP133A— CDR35BP133A— CDR35BP133A— CDR35BP153A— CDR35BP163A—	4,700 5,100 5,600 6,200 6,800 7,500 8,200 9,100 10,000 11,000 12,000 13.000 15.000 16.000 18,000 20,000 22,000	EJ,K EJ,K EJ,K EJ,K EJ,K EJ,K EJ,K EJ,K	BP BP BP BP BP BP BP BP BP BP BP BP BP B	100 100 100 100 100 100 100 100 50 50 50 50 50 50 50
Style 1825/0	DR35 (BX)			
CDR35BX563B CDR35BX823B CDR35BX823B CDR35BX104B CDR35BX124B CDR35BX154B CDR35BX184A CDR35BX224A CDR35BX274A CDR35BX394A CDR35BX394A CDR35BX394A CDR35BX474A	56.000 68.000 82,000 100,000 150.000 180.000 220,000 270.000 390.000 470.000	K,M K,M K,M K,M K,M K,M K,M K,M K,M	BX BX BX BX BX BX BX BX BX BX BX	100 100 100 100 100 100 50 50 50 50 50


Add appropriate failure rate Add appropriate termination finish Capacitance Tolerance

^{1/} The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

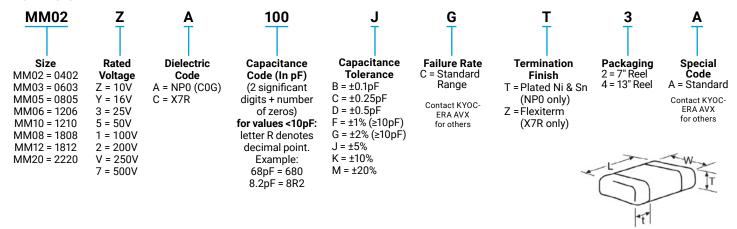
MLCC Medical Applications – MM Series

The MM series is a multi-layer ceramic capacitor designed for use in medical applications other than implantable/life support. These components have the design & change control expected for medical devices and also offer enhanced LAT including reliability testing and 100% inspection.

APPLICATIONS

Implantable, Non-Life Supporting Medical Devices

· e.g. implanted temporary cardiac monitor, insulin pumps


External, Life Supporting Medical Devices

· e.g. heart pump external controller

External Devices

· e.g. patient monitoring, diagnostic equipment

HOW TO ORDER

COMMERCIAL VS MM SERIES PROCESS COMPARISON

	Commercial	MM Series						
Administrative	Standard part numbers; no restriction on who purchases these parts	Specific series part number, used to control supply of product						
Lot Qualification Destructive Physical Analysis (DPA)	As per EIA RS469	Increased sample plan – stricter criteria						
Visual/Cosmetic Quality	Standard process and inspection	100% inspection						
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing						
Design/Change Control	Required to inform customer of changes in: form fit function	KYOCERA AVX will qualify and notify customers before making any change to the following materials or processes:						

062121

NP0 (C0G) - Specifications & Test Methods

Parame	ter/Test	NP0 Specification Limits	Measuring Conditions					
	perature Range	-55°C to +125°C	Temperature Cycle Chamber					
•	eitance Q	Within specified tolerance <30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	Freq.: 1.0 MHz ± 10% for cap ≤ 1000 pF 1.0 kHz ± 10% for cap > 1000 pF Voltage: 1.0Vrms ± .2V					
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rated voltage for 60 ± 5 secs @ room temp/humidity					
Dielectric	: Strength	No breakdown or visual defects	Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500V devices.					
	Appearance	No defects	Deflection: 2mm					
Resistance to	Capacitance Variation	±5% or ±.5 pF, whichever is greater	Test Time: 30 seconds					
Flexure Stresses	Q	Meets Initial Values (As Above)						
	Insulation Resistance	≥ Initial Value x 0.3	90 mm					
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solder at 230 ± 5°C for 5.0 ± 0.5 seconds					
	Appearance	No defects, <25% leaching of either end terminal						
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater						
Resistance to Solder Heat	Q	Meets Initial Values (As Above)	Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2					
ooluci ilcut	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring electrical properties.					
	Dielectric Strength	Meets Initial Values (As Above)						
	Appearance	No visual defects	Step 1: -55°C ± 2° 30 ± 3 minutes					
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp ≤ 3 minutes					
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2° 30 ± 3 minutes					
Giloux	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp ≤ 3 minutes					
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 hours at room temperature					
	Appearance	No visual defects						
	Capacitance Variation	≤ ±3.0% or ± .3 pF, whichever is greater	Charge device with twice rated voltage in test					
Load Life	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	chamber set at 125°C ± 2°C for 1000 hours (+48, -0). Remove from test chamber and stabilize at					
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	room temperature for 24 hours before measuring.					
	Dielectric Strength	Meets Initial Values (As Above)	belove modelling.					
	Appearance	No visual defects						
	Capacitance Variation	≤ ±5.0% or ± .5 pF, whichever is greater	Store in a test chamber set at 85°C ± 2°C/ 85%					
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	± 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied.					
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber and stabilize at room temperature for 24 ± 2 hours before measuring.					
	Dielectric Strength	Meets Initial Values (As Above)						

NP0/C0G Capacitance Range

PREFERRED SIZES ARE SHADED

SIZE		06	503				0805	1206					
WVD	C 16	25	50	100	16	25	50	100	16	25	50	100	
Cap 0.5 0F	₹5												
(pF) 1.0 1F	20												
1.2 1F	₹2												
1.5 1F													
1.8 1F													
2.2 2F													
2.7 2F													
3.3 3F													
3.9 3F													
4.7 4F													
5.6 5F													
6.8 6F													
8.2 8F													
10 10													
12 12													
15 15													
18 18													
22 22													
27 27													
33 33													
39 39													
47 47													
56 56													
68 68													
82 82													
100 10													
120 12													
150 15													
180 18													
220 22													
270 27													
330 33													
390 39													
470 47													
560 56													
680 68													
820 82				-									
1000 10				-									
1200 12				-									
1500 15 WVDC	16	25	50	100	16	25	50	100	16	25	50	100	
SIZE	16		1 50 5 03	100	10	25 50 100 1206							

113016

X7R Specifications and Test Methods

Parame	ter/Test	X7R Specification Limits	Measuring (Conditions				
	perature Range	-55°C to +125°C	Temperature C	ycle Chamber				
	on Factor	Within specified tolerance ≤ 10% for ≥ 50V DC rating ≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating	Freq.: 1.0 k Voltage: 1.0'					
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rated voltage for 120 ± 5 secs @ room temp/humidity					
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500V devices.					
	Appearance	No defects	Deflectio					
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	-				
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	V					
	Insulation Resistance	≥ Initial Value x 0.3	90 r					
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.5	solder at 230 ± 5°C seconds				
	Appearance	No defects, <25% leaching of either end terminal	_					
	Capacitance Variation	≤ ±7.5%	Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties.					
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)						
00.00.1.00.	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.				
	Dielectric Strength	Meets Initial Values (As Above)						
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes				
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes				
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes				
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes				
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	and measure after om temperature				
	Appearance	No visual defects						
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r	at 125°C ± 2°C				
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou					
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test cha room temperature for	24 ± 2 hours before				
	Dielectric Strength	Meets Initial Values (As Above)	measu	iring.				
	Appearance	No visual defects		1 10500 : 000/050				
	Capacitance Variation	≤ ±12.5%	Store in a test chamber at 5% relative humid	ity for 1000 hours				
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated					
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber and stabilize at room temperature and humidity for					
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours before measuring.					

X7R Capacitance Range

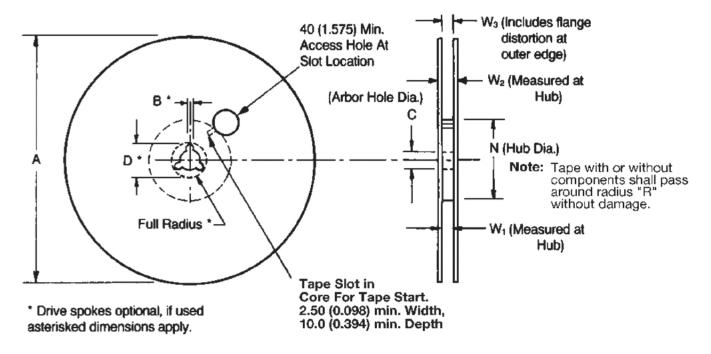
PREFERRED SIZES ARE SHADED

	SIZE	E		040					60							080								206								10					80				12			222	
		WVDC	16	25	50	10	16	25	5 5	50 1	100	200	10	16	25	50	100	200	250	10	16	25	50	100	200	250	500	10	16	25	50	100	200	250	500	50	100	200	50	100	200	250	25	50	10
ар	220	221																														П								П			П		$\overline{}$
oF)	270	271					Т		Т	T														T								П								П			П		$\overline{}$
	330	331					П	Т	Т	П											П	П			П							П								П			П		$\overline{}$
	390	391							Т																							П											П		$\overline{}$
	470	471					Т		Т	T	T													Τ								П								П			П		<u> </u>
	560	561							Т															Τ								П											П		Π
	680	681							Т																							П											П		_
	820	821							Т																																		П		Π
Π.	1000	102					Т		Т	П																						П								П			П		Г
	1200	122							Т																							П											П		Π
	1500	152							Т																																		П		Π
	1800	182					Т		Т	T														Т								П								П			П		Π
	2200	222																																											
	2700	272																																						Г			П	\Box	_
-	3300	332							T																																		П		ī
	3900	392																																											_
	4700	472							Т																																		П		Π
	5600	562							Т																																		П		Π
	6800	682					Т		Т															Т								П								П			П		Ι_
- 1	8200	822							Т																																		П		_
	0.010	103							T	T														T								Ħ								П			П		Γ
	0.012	123		Г			Т		Т															Т								П								П			П		Π
	0.015	153							Т		\neg																																П		Π
C	0.018	183							Т																																		П		Ī
C	0.022	223					Т		Т															Т								П								П			П		Π
C	0.027	273					Т		Т		\neg																					ΠÌ											П		_
	0.033	333			İ				T		T																					Ħ								П			П		ı —
С	0.039	393			i i		Т		T															Т								П								П			П		Γ
C	0.047	473					Т		Т		T													Т								П								П			П		Π
C	0.056	563							Т																																		П		Γ
	0.068	683							Т																																		П		i -
С	0.082	823					Т		Т															Т								П											П		Π
$\overline{}$	0.10	104	1																																										
	0.12	124							Ι																																				
	0.15	154							Ι																																				
	0.22	224							I																																				
	0.33	334																																											
	0.47	474		Г			Г	I	I	T	┚																																		
	0.56	564							\perp	\Box																																			
	0.68	684					\Box	Ι	I																L																				
I	0.82	824							Ι																																				
I	1.0	105		Г			I	I	I	I														I	L																				
	1.2	125							\mathbb{I}																																				
	1.5							\perp	Ι																																				
	WVD0	0	16	25	50	10	16	25	5 5	50 1	100	200	10	16	25	50	100	200	250	10	16	25	50	100	200	250	500	10	16	25	50	100	200	250	500	50	100	200	50	100	200	250	25	50	10
	SIZE	-		040	12			n	60	3					(080	5						12	206							12	10				1	80	R		18	12			222	ດີ
	JILL			J-T(J		_						-50	-						12														50	_		. 0					_

110116

Packaging of Chip Components

Automatic Insertion Packaging



TAPE & REEL QUANTITIES

All tape and reel specifications are in compliance with RS481.

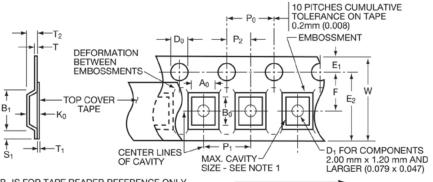
	4mm	8mm	12mm	
Paper or Embossed Carrier		0612, 0508, 0805, 1206, 1210		
Embossed Only	0101		1808	1812, 1825 2220, 2225
Paper Only		0101, 0201, 0306, 0402, 0603		
Qty. per Reel/7" Reel	4,000	1,000, 2,000, 3,000 or 4,000, 10,000, 15,000, 20,000 Contact factory for exact quantity	3,000	500, 1,000 Contact factory for exact quantity
Qty. per Reel/13" Reel		5,000, 10,000, 50,000 Contact factory for exact quantity	10,000	4,000

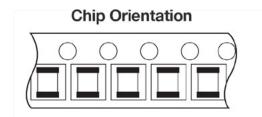
REEL DIMENSIONS

Tape Size ⁽¹⁾	A Max.	B* Min.	С	D* Min.	N Min.	W ₁	W ₂ Max.	W ₃
4mm	1.80 (7.087)	1.5 (0.059)	13.0±0.5 (0.522±0.020)	20.2 (0.795)	60.0 (2.362)	4.35±0.3 (0.171±0.011)	7.95 (0.312)	
8mm	330	1.5	13.0 ^{+0.50}	20.2	50.0	8.40 ^{+1.5} (0.331 ^{+0.059})	14.4 (0.567)	7.90 Min. (0.311) 10.9 Max. (0.429)
12mm	(12.992)	(0.059)	(0.512 ^{+0.020} _{-0.008})	(0.795)	(1.969)	12.4 ^{+2.0} (0.488 ^{+0.079})	18.4 (0.724)	11.9 Min. (0.469) 15.4 Max. (0.607)

Metric dimensions will govern.

English measurements rounded and for reference only.


⁽¹⁾ For tape sizes 16mm and 24mm (used with chip size 3640) consult EIA RS-481 latest revision.



Embossed Carrier Configuration

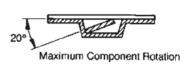
4, 8 & 12mm Tape Only

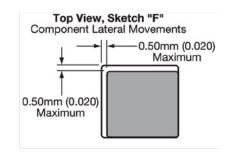
B₁ IS FOR TAPE READER REFERENCE ONLY INCLUDING DRAFT CONCENTRIC AROUND B0

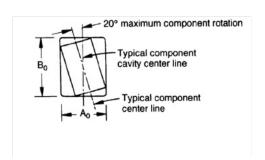
User Direction of Feed

4, 8 & 12mm Embossed Tape **Metric Dimensions Will Govern**

CONSTANT DIMENSIONS

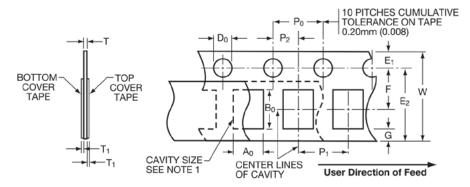

Tape Size	D _o	E ₁	P ₀	P ₂	S ₁ Min.	T Max.	T₁ Max.
4mm	0.80±0.04	0.90±0.05	2.0±0.04	1.00±0.02	1.075	0.26	0.06
	(0.031±0.001)	(0.035±0.001)	(0.078±0.001)	(0.039±0.0007)	(0.042)	(0.010)	(0.002)
8mm	$1.50_{ -0.0}^{ +0.10} \\ (0.059_{ -0.0}^{ +0.004})$	1.75 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	0.60	0.60	0.10
& 12mm		(0.069 ± 0.004)	(0.157 ± 0.004)	(0.079 ± 0.002)	(0.024)	(0.024)	(0.004)


VARIABLE DIMENSIONS


Tape Size	B ₁ Max.	D ₁ Min.	E ₂ Min.	F	P ₁ See Note 5	R Min. See Note 2	T ₂	W Max.	$A_0 B_0 K_0$
8mm	4.35 (0.171)	1.00 (0.039)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	4.00 ± 0.10 (0.157 ± 0.004)	25.0 (0.984)	2.50 Max. (0.098)	8.30 (0.327)	See Note 1
12mm	8.20 (0.323)	1.50 (0.059)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	4.00 ± 0.10 (0.157 ± 0.004)	30.0 (1.181)	6.50 Max. (0.256)	12.3 (0.484)	See Note 1
8mm 1/2 Pitch	4.35 (0.171)	1.00 (0.039)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	2.00 ± 0.10 (0.079 ± 0.004)	25.0 (0.984)	2.50 Max. (0.098)	8.30 (0.327)	See Note 1
12mm Double Pitch	8.20 (0.323)	1.50 (0.059)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	8.00 ± 0.10 (0.315 ± 0.004)	30.0 (1.181)	6.50 Max. (0.256)	12.3 (0.484)	See Note 1

NOTES:

- 1. The cavity defined by A0, B0, and K0 shall be configured to provide the following: Surround the component with sufficient clearance such that:
 - b) the component does not protrude beyond the sealing plane of the cover tape.
 - c) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the cover tape has been removed.
 - d) rotation of the component is limited to 20° maximum (see Sketches D & E).
 - e) lateral movement of the component is restricted to 0.5mm maximum (see Sketch F).
- 2. Tape with or without components shall pass around radius "R" without damage.
- 3. Bar code labeling (if required) shall be on the side of the reel opposite the round sprocket holes. Refer to EIA-556.
- 4. B₁ dimension is a reference dimension for tape feeder clearance only. 5. If P_1 = 2.0mm, the tape may not properly index in all tape feeders.

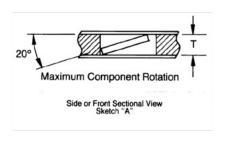


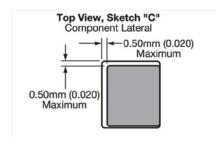
Paper Carrier Configuration

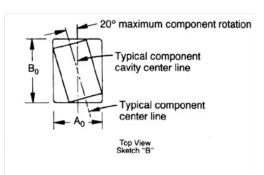
8 & 12mm Tape Only

4, 8 & 12mm Embossed Tape **Metric Dimensions Will Govern**

CONSTANT DIMENSIONS


Tape Size	D _o	E	P ₀	P ₂	T ₁	G. Min.	R Min.
8mm and 12mm	1.50 ^{+0.10} (0.059 ^{+0.004})	1.75 ± 0.10 (0.069 ± 0.004)	4.00 ± 0.10 (0.157 ± 0.004)	2.00 ± 0.05 (0.079 ± 0.002)	0.10 (0.004) Max.	0.75 (0.030) Min.	25.0 (0.984) See Note 2 Min.


VARIABLE DIMENSIONS


Tape Size	P ₁ See Note 4	E ₂ Min.	F	w	A ₀ B ₀	Т
8mm	4.00 ± 0.10 (0.157 ± 0.004)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	8.00 ^{+0.30} -0.10 (0.315 ^{+0.012})	See Note 1	1.10mm (0.043) Max.
12mm	4.00 ± 0.10 (0.157 ± 0.004)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	12.0 ± 0.30 (0.472 ± 0.012)		for Paper Base Tape and
8mm 1/2 Pitch	2.00 ± 0.05 (0.079 ± 0.002)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	8.00 ^{+0.30} (0.315 ^{+0.012} (0.315 -0.004)		1.60mm
12mm Double Pitch	8.00 ± 0.10 (0.315 ± 0.004)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	12.0 ± 0.30 (0.472 ± 0.012)		(0.063) Max. for Non-Paper Base Compositions

NOTES:

- 1. The cavity defined by A0, B0, and T shall be configured to provide sufficient clearance surrounding the component so that:
 - a) the component does not protrude beyond either surface of the carrier tape;
 - b)) the component can be removed from the cavity in a vertical direction without mechanical restriction after the top cover tape has been removed;
- c) rotation of the component is limited to 20° maximum (see Sketches A & B);
- d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch C).
- 2. Tape with or without components shall pass around radius "R" without damage.
- 3. Bar code labeling (if required) shall be on the side of the reel opposite the sprocket holes. Refer to EIA-556.
- 4. If P₁ = 2.0mm, the tape may not properly index in all tape feeders.

Bar Code Labeling Standard

KYOCERA AVX bar code labeling is available and follows latest version of EIA-556

Basic Capacitor Formulas

I. Capacitance (farads)

English:
$$C = \frac{.224 \text{ K A}}{T_D}$$

Metric: $C = \frac{.0884 \text{ K A}}{T_D}$

II. Energy stored in capacitors (Joules, watt - sec)

III. Linear charge of a capacitor (Amperes)

$$I = C \frac{dV}{dt}$$

IV. Total Impedance of a capacitor (ohms)

$$Z = \sqrt{R_S^2 + (X_C - X_L)^2}$$

V. Capacitive Reactance (ohms)

$$x_C = \frac{1}{2 \pi fC}$$

VI. Inductive Reactance (ohms)

$$x_1 = 2 \pi fL$$

VII. Phase Angles:

Ideal Capacitors: Current leads voltage 90° Ideal Inductors: Current lags voltage 90° Ideal Resistors: Current in phase with voltage

VIII. Dissipation Factor (%)

D.F.=
$$\tan \delta$$
 (loss angle) = $\frac{\text{E.S.R.}}{\text{X}_{\text{C}}}$ = (2 π fC) (E.S.R.)

IX. Power Factor (%)

P.F. = Sine (loss angle) = $\cos \varphi$ (phase angle)

P.F. = (when less than 10%) = DF

X. Quality Factor (dimensionless)

Q = Cotan
$$\delta$$
 (loss angle) = $\frac{1}{D.E}$

XI. Equivalent Series Resistance (ohms)

E.S.R. = (D.F.) (Xc) = (D.F.) / (2
$$\pi$$
 fC)

XII. Power Loss (watts)

Power Loss = $(2 \pi fCV^2)$ (D.F.)

XIII. KVA (Kilowatts)

 $KVA = 2 \pi fCV^2 \times 10^{-3}$

XIV. Temperature Characteristic (ppm/°C)

T.C. =
$$\frac{Ct - C_{25}}{C_{25} (T_t - 25)} \times 10^6$$

XV. Cap Drift (%)

C.D. =
$$\frac{C_1 - C_2}{C_1}$$
 x 100

XVI. Reliability of Ceramic Capacitors

$$\begin{array}{c} L_{o} = \left(\frac{V_{t}}{V_{o}} \right) X & \left(\frac{T_{t}}{T_{o}} \right) \end{array} \label{eq:loss_problem}$$

XVII. Capacitors in Series (current the same)

Any Number:
$$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} - \frac{1}{C_N}$$
 Two: $C_T = \frac{C_1 C_2}{C_1 + C_2}$

XVIII. Capacitors in Parallel (voltage the same)

$$C_T = C_1 + C_2 --- + C_N$$

XIX. Aging Rate

A.R. = $%\Delta$ C/decade of time

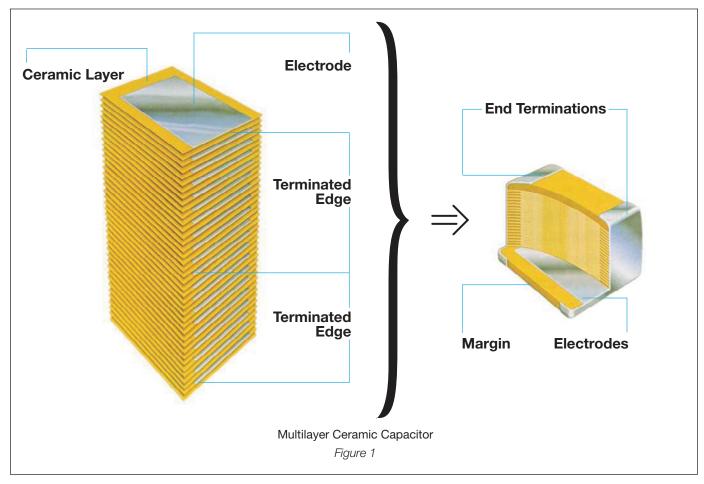
XX. Decibels

$$db = 20 \log \frac{V_1}{V_2}$$

METRIC PREFIXES

Pico	X 10 ⁻¹²
Nano	X 10 ⁻⁹
Micro	X 10 ⁻⁶
Milli	X 10 ⁻³
Deci	X 10 ⁻¹
Deca	X 10 ⁺¹
Kilo	X 10 ⁺³
Mega	X 10 ⁺⁶
Giga	X 10 ⁺⁹
Tera	X 10 ⁺¹²

SYMBOLS


K = Dielectric Constant	f = frequency	L _t = Test life
A = Area	L = Inductance	V _t = Test voltage
T _D = Dielectric thickness	δ = Loss angle	V _o = Operating voltage
V = Voltage	φ = Phase angle	T _t = Test temperature
t = time	X & Y = exponent effect of voltage and temp.	T _o = Operating temperature
R _s = Series Resistance	L _o = Operating life	

General Description

Basic Construction - A multilayer ceramic (MLC) capacitor is a monolithic block of ceramic containing two sets of offset, interleaved planar electrodes that extend to two opposite surfaces of the ceramic dielectric. This simple structure requires a considerable amount of sophistication, both in material and manufacture, to produce it in the quality and quantities needed in

today's electronic equipment.

Formulations - Multilayer ceramic capacitors are available in both Class 1 and Class 2 formulations. Temperature compensating formulation are Class 1 and temperature stable and general application formulations are classified as Class 2.

Class 1 - Class 1 capacitors or temperature compensating capacitors are usually made from mixtures of titanates where barium titanate is normally not a major part of the mix. They have predictable temperature coefficients and in general, do not have an aging characteristic. Thus they are the most stable capacitor available. The most popular Class 1 multilayer ceramic capacitors are COG (NPO) temperature compensating capacitors (negativepositive 0 ppm/°C).

Class 2 - EIA Class 2 capacitors typically are based on the chemistry of barium titanate and provide a wide range of capacitance values and temperature stability. The most commonly used Class 2 dielectrics are X7R and Y5V. The X7R provides intermediate capacitance values which vary only ±15% over the temperature range of -55°C to 125°C. It finds applications where stability over a wide temperature range is required.

The Y5V provides the highest capacitance values and is used in applications where limited temperature changes are expected. The capacitance value for Y5V can vary from 22% to -82% over the -30°C to 85°C temperature range.

All Class 2 capacitors vary in capacitance value under the influence of temperature, operating voltage (both AC and DC), and frequency. For additional information on performance changes with operating conditions, consult KYOCERA AVX's software, SpiCap.

KYOCERa

General Description

Table 1: EIA and MIL Temperature Stable and General **Application Codes**

EIA CODE Percent Capacity Change Over Temperature Range				
RS198	Temperature Range			
X7	-55°C to +125°C			
X6	-55°C to +105°C			
X5	-55°C to +85°C			
Y5	-30°C to +85°C			
Z5	+10°C to +85°C			
Code	Percent Capacity Change			
D	±3.3%			
E	±4.7%			
F	±7.5%			
Р	±10%			
R	±15%			
S	±22%			
Т Т	+22%, -33%			
U	+22%, - 56%			
V	+22%, -82%			

EXAMPLE - A capacitor is desired with the capacitance value at 25°C to increase no more than 7.5% or decrease no more than 7.5% from -30°C to +85°C. EIA Code will be Y5F.

	MIL CODE					
Symbol	Temperature Range					
Α	-55°C t	to +85°C				
В	-55°C to +125°C					
С	-55°C to +150°C					
Oursels al	Cap. Change	Cap. Change				
Symbol	Zero Volts	Rated Volts				
R	+15%, -15%	+15%, -40%				
S	+22%, -22%	+22%, -56%				
W	+22%, -56%	+22%, -66%				
X	+15%, -15%	+15%, -25%				
Υ	+30%, -70%	+30%, -80%				
l z	+20%20%	+20%30%				

Temperature characteristic is specified by combining range and change symbols, for example BR or AW. Specification slash sheets indicate the characteristic applicable to a given style of capacitor.

In specifying capacitance change with temperature for Class 2 materials, EIA expresses the capacitance change over an operating temperature range by a 3 symbol code. The first symbol represents the cold temperature end of the temperature range, the second represents the upper limit of the operating temperature range and the third symbol represents the capacitance change allowed over the operating temperature range. Table 1 provides a detailed explanation of the EIA system.

Effects of Voltage - Variations in voltage have little effect on Class 1 dielectric but does affect the capacitance and dissipation factor of Class 2 dielectrics. The application of DC voltage reduces both the capacitance and dissipation factor while the application of an AC voltage within a reasonable range tends to increase both capacitance and dissipation factor readings. If a high enough AC voltage is applied, eventually it will reduce capacitance just as a DC voltage will. Figure 2 shows the effects of AC voltage.

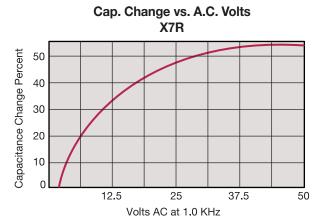
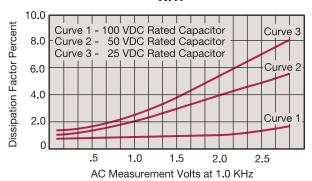
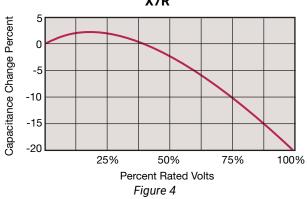


Figure 2

Capacitor specifications specify the AC voltage at which to measure (normally 0.5 or 1 VAC) and application of the wrong voltage can cause spurious readings. Figure 3 gives the voltage coefficient of dissipation factor for various AC voltages at 1 kilohertz. Applications of different frequencies will affect the percentage changes versus voltages.

D.F. vs. A.C. Measurement Volts X7R




Figure 3

Typical effect of the application of DC voltage is shown in Figure 4. The voltage coefficient is more pronounced for higher K dielectrics. These figures are shown for room temperature conditions. The combination characteristic known as voltage temperature limits which shows the effects of rated voltage over the operating temperature range is shown in Figure 5 for the military BX characteristic.

Example Change vs. D.C. Volts X7R

Example Cap. Change vs. Temperature X7R

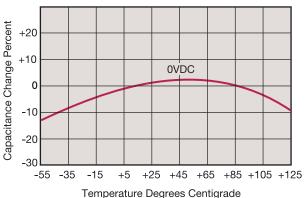


Figure 5

Effects of Time - Class 2 ceramic capacitors change capacitance and dissipation factor with time as well as temperature, voltage and frequency. This change with time is known as aging. Aging is caused by a gradual re-alignment of the crystalline structure of the ceramic and produces an exponential loss in capacitance and decrease in dissipation factor versus time. A typical curve of aging rate for semistable ceramics is shown in Figure 6.

If a Class 2 ceramic capacitor that has been sitting on the shelf for a period of time, is heated above its curie point, (125°C for 4 hours or 150°C for 1/2 hour will suffice) the part will de-age and return to its initial capacitance and dissi-pation factor readings. Because the capacitance changes rapidly, immediately after de-aging, the basic capacitance measurements are normally referred to a time period sometime after the de-aging process. Various manufacturers use different time bases but the most popular one is one day or twentyfour hours after "last heat." Change in the aging curve can be caused by the application of voltage and other stresses. The possible changes in capacitance due to de-aging by heating the unit explain why capacitance changes are allowed after test, such as temperature cycling, moisture resistance, etc., in MIL specs. The application of high voltages such as dielectric withstanding voltages also tends to de-age capacitors and is why re-reading of capacitance after 12 or 24 hours is allowed in military specifications after dielectric strength tests have been performed.

Example Curve of Aging Rate X7R

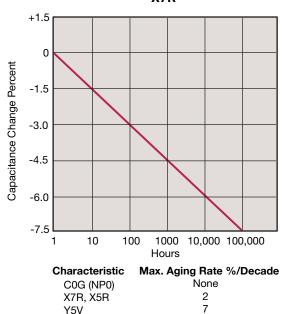


Figure 6

Effects of Frequency - Frequency affects capacitance and impedance characteristics of capacitors. This effect is much more pronounced in high dielectric constant ceramic formulation than in low K formulations. KYOCERA AVX's SpiCap software generates impedance, ESR, series inductance, series resonant frequency and capacitance all as functions of frequency, temperature and DC bias for standard chip sizes and styles. It is available free from KYOCERA AVX and can be downloaded for free from

KYOCERA AVX website: www.kyocera-avx.com.

KYOCERa

General Description

Effects of Mechanical Stress - High "K" dielectric ceramic capacitors exhibit some low level piezoelectric reactions under mechanical stress. As a general statement, the piezoelectric output is higher, the higher the dielectric constant of the ceramic. It is desirable to investigate this effect before using high "K" dielectrics as coupling capacitors in extremely low level applications.

Reliability - Historically ceramic capacitors have been one of the most reliable types of capacitors in use today. The approximate formula for the reliability of a ceramic capacitor is:

$$\frac{L_o}{L_t} = \left(\frac{V_t}{V_o}\right) X \left(\frac{T_t}{T_o}\right) Y$$

where

L_o = operating life T_t = test temperature and L, = test life T_0 = operating temperature in °C V_t = test voltage

X,Y = see text V_0 = operating voltage

Historically for ceramic capacitors exponent X has been considered as 3. The exponent Y for temperature effects typically tends to run about 8.

A capacitor is a component which is capable of storing electrical energy. It consists of two conductive plates (electrodes) separated by insulating material which is called the dielectric. A typical formula for determining capacitance is:

$$C = \frac{.224 \text{ KA}}{t}$$

C = capacitance (picofarads)

K = dielectric constant (Vacuum = 1)

A = area in square inches

t = separation between the plates in inches (thickness of dielectric)

.224 = conversion constant (.0884 for metric system in cm)

Capacitance - The standard unit of capacitance is the farad. A capacitor has a capacitance of 1 farad when 1 coulomb charges it to 1 volt. One farad is a very large unit and most capacitors have values in the micro (10^{-6}), nano (10^{-9}) or pico (10^{-12}) farad level.

Dielectric Constant - In the formula for capacitance given above the dielectric constant of a vacuum is arbitrarily chosen as the number 1. Dielectric constants of other materials are then compared to the dielectric constant of a vacuum.

Dielectric Thickness - Capacitance is indirectly proportional to the separation between electrodes. Lower voltage requirements mean thinner dielectrics and greater capacitance per volume.

Area - Capacitance is directly proportional to the area of the electrodes. Since the other variables in the equation are usually set by the performance desired, area is the easiest parameter to modify to obtain a specific capacitance within a material group.

Energy Stored – The energy which can be stored in a capacitor is given by the formula:

$$E = \frac{1}{2}CV^2$$

E = energy in joules (watts-sec)

V = applied voltage

C = capacitance in farads

Potential Change - A capacitor is a reactive component which reacts against a change in potential across it. This is shown by the equation for the linear charge of a capacitor:

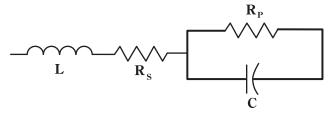
$$I_{ideal} = C \frac{dV}{dt}$$

where

I = Current

C = Capacitance

dV/dt = Slope of voltage transition across capacitor


Thus an infinite current would be required to instantly change the potential across a capacitor. The amount of current a capacitor can 'sink" is determined by the above equation.

Equivalent Circuit - A capacitor, as a practical device, exhibits not only capacitance but also resistance and inductance. A simplified schematic for the equivalent circuit is:

C = Capacitance L = Inductance

R_s = Series Resistance

R_n = Parallel Resistance

Reactance - Since the insulation resistance (Rp) is normally very high, the total impedance of a capacitor is:

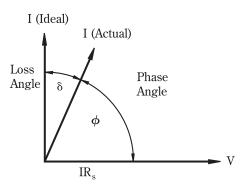
$$Z = \sqrt{R_S^2 + (X_C - X_L)^2}$$

where

Z = Total Impedance

R_s = Series Resistance

X_c = Capacitive Reactance $\frac{1}{2\pi}$ fC


X₁ = Inductive Reactance

The variation of a capacitor's impedance with frequency determines its effectiveness in many applications.

Phase Angle - Power Factor and Dissipation Factor are often confused since they are both measures of the loss in a capacitor under AC application and are often almost identical in value. In a "perfect" capacitor the current in the capacitor will lead the voltage by 90°.

General Description

In practice the current leads the voltage by some other phase angle due to the series resistance RS. The complement of this angle is called the loss angle and:

> Power Factor (P.F.) = $\cos \varphi$ or $\sin \delta$ Dissipation Factor (D.F.) = $\tan \delta$

for small values of the tan and sine are essentially equal which has led to the common interchangeability of the two terms in the industry.

Equivalent Series Resistance - The term E.S.R. or Equivalent Series Resistance combines all losses both series and parallel in a capacitor at a given frequency so that the equivalent circuit is reduced to a simple R-C series connection.

Dissipation Factor – The DF/PF of a capacitor tells what percent of the apparent power input will turn to heat in the capacitor.

Dissipation Factor =
$$\frac{\text{E.S.R.}}{X_{\odot}}$$
 = (2 π fC) (E.S.R.)

The watts loss are:

Watts loss = $(2 \pi fCV^2)$ (D.F.)

Very low values of dissipation factor are expressed as their reciprocal for convenience. These are called the "Q" or Quality factor of capacitors.

Parasitic Inductance - The parasitic inductance of capacitors is becoming more and more important in the decoupling of today's high speed digital systems. The relationship between the inductance and the ripple voltage induced on the DC voltage line can be seen from the simple inductance equation:

$$V = L \frac{di}{dt}$$

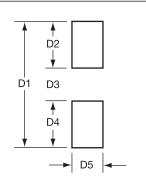
The $\frac{di}{dt}$ seen in current microprocessors can be as high as 0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic inductance can cause a voltage spike of 30mV. While this does not sound very drastic, with the Vcc for microprocessors decreasing at the current rate, this can be a fairly large percentage.

Another important, often overlooked, reason for knowing the parasitic inductance is the calculation of the resonant frequency. This can be important for high frequency, bypass capacitors, as the resonant point will give the most signal attenuation. The resonant frequency is calculated from the simple equation:

$$f_{\text{res}} = \frac{1}{2\pi\sqrt{\text{LC}}}$$

Insulation Resistance - Insulation Resistance is the resistance measured across the terminals of a capacitor and consists principally of the parallel resistance RP shown in the equivalent circuit. As capacitance values and hence the area of dielectric increases, the I.R. decreases and hence the product (C x IR or RC) is often specified in ohm farads or more commonly megohm-microfarads. Leakage current is determined by dividing the rated voltage by IR (Ohm's Law).

Dielectric Strength - Dielectric Strength is an expression of the ability of a material to withstand an electrical stress. Although dielectric strength is ordinarily expressed in volts, it is actually dependent on the thickness of the dielectric and thus is also more generically a function of volts/mil.


Dielectric Absorption – A capacitor does not discharge instantaneously upon application of a short circuit, but drains gradually after the capacitance proper has been discharged. It is common practice to measure the dielectric absorption by determining the "reappearing voltage" which appears across a capacitor at some point in time after it has been fully discharged under short circuit conditions.

Corona - Corona is the ionization of air or other vapors which causes them to conduct current. It is especially prevalent in high voltage units but can occur with low voltages as well where high voltage gradients occur. The energy discharged degrades the performance of the capacitor and can in time cause catastrophic failures.

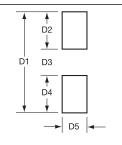
MLC Chip Capacitors

REFLOW SOLDERING

Case Size	D1	D2	D3	D4	D5
0201	0.85 (0.033)	0.30 (0.012)	0.25 (0.010)	0.30 (0.012)	0.35 (0.014)
0402	1.70 (0.067)	0.60 (0.024)	0.50 (0.020)	0.60 (0.024)	0.50 (0.020)
0603	2.30 (0.091)	0.80 (0.031)	0.70 (0.028)	0.80 (0.031)	0.75 (0.030)
0805	3.00 (0.118)	1.00 (0.039)	1.00 (0.039)	1.00 (0.039)	1.25 (0.049)
1206	4.00 (0.157)	1.00 (0.039)	2.00 (0.079)	1.00 (0.039)	1.60 (0.063)
1210	4.00 (0.157)	1.00 (0.039)	2.00 (0.079)	1.00 (0.039)	2.50 (0.098)
1808	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	2.00 (0.079)
1812	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	3.00 (0.118)
1825	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	6.35 (0.250)
2220	6.60 (0.260)	1.00 (0.039)	4.60 (0.181)	1.00 (0.039)	5.00 (0.197)
2225	6.60 (0.260)	1.00 (0.039)	4.60 (0.181)	1.00 (0.039)	6.35 (0.250)

Dimensions in millimeters (inches)

Component Pad Design


Component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. Pad designs are given below for the most common sizes of multilayer ceramic capacitors for both wave and reflow soldering. The basis of these designs is:

Pad width equal to component width. It is permissible to

decrease this to as low as 85% of component width but it is not advisable to go below this.

- · Pad overlap 0.5mm beneath component.
- · Pad extension 0.5mm beyond components for reflow and 1.0mm for wave soldering.

WAVE SOLDERING

Case Size	D1	D2	D3	D4	D5
0603	3.10 (0.12)	1.20 (0.05)	0.70 (0.03)	1.20 (0.05)	0.75 (0.03)
0805	4.00 (0.15)	1.50 (0.06)	1.00 (0.04)	1.50 (0.06)	1.25 (0.05)
1206	5.00 (0.19)	1.50 (0.06)	2.00 (0.09)	1.50 (0.06)	1.60 (0.06)

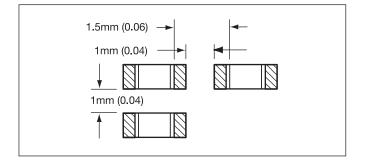
Dimensions in millimeters (inches)

Component Spacing

For wave soldering components, must be spaced sufficiently far apart to avoid bridging or shadowing (inability of solder to penetrate properly into small spaces). This is less important for reflow soldering but sufficient space must be allowed to enable rework should it be required.

Preheat & Soldering

The rate of preheat should not exceed 4°C/second to prevent thermal shock. A better maximum figure is about 2°C/second.


For capacitors size 1206 and below, with a maximum thickness of 1.25mm, it is generally permissible to allow a temperature differential from preheat to soldering of 150°C. In all other cases this differential should not exceed 100°C.

For further specific application or process advice, please consult KYOCERA AVX.

Cleaning

Care should be taken to ensure that the capacitors are thoroughly cleaned of flux residues especially the space beneath the capacitor. Such residues may otherwise become conductive and effectively offer a low resistance bypass to the capacitor.

Ultrasonic cleaning is permissible, the recommended conditions being 8 Watts/litre at 20-45 kHz, with a process cycle of 2 minutes vapor rinse, 2 minutes immersion in the ultrasonic solvent bath and finally 2 minutes vapor rinse.

Recommended Soldering Profiles

REFLOW SOLDER PROFILES

KYOCERA AVX RoHS compliant products utilize termination finishes (e.g.Sn or SnAg) that are compatible with all Pb-Free soldering systems and are fully reverse compatible with SnPb soldering systems. A recommended SnPb profile is shown for comparison; for Pb-Free soldering, IPC/ JEDECJ- STD-020C may be referenced. The upper line in the chart shows the maximum envelope to which products are qualified (typically 3x reflow cycles at 260°C max). The center line gives the recommended profile for optimum wettability and soldering in Pb-Free Systems.

Preheat:

The pre-heat stabilizes the part and reduces the temperature differential prior to reflow. The initial ramp to 125°C may be rapid, but from that point (2-3)°C/sec is recommended to allow ceramic parts to heat uniformly and plastic encapsulated parts to stabilize through the glass transition temperature of the body (~ 180°C).

Reflow:

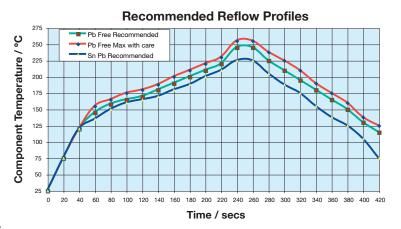
In the reflow phase, the maximum recommended time > 230°C is 40secs. Time at peak reflow is 10secs max.; optimum reflow is achieved at 250°C, (see wetting balance chart opposite) but products are qualified to 260°C max. Please reference individual product datasheets for maximum limits

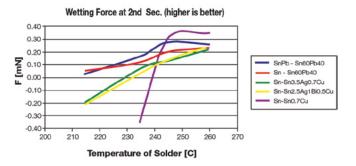
Cool down should not be forced and 6°C/sec is recommended. A slow cool down will result in a finer grain structure of the reflow solder in the solder fillet.

WAVE SOLDER PROFILES

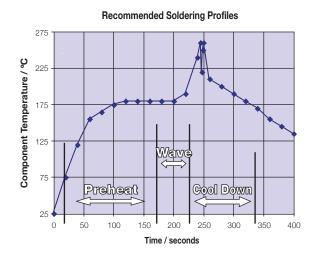
For wave solder, there is no change in the recommended wave profile; all standard Pb-Free (SnCu/SnCuAg) systems operate at the same 260°C max recommended for SnPb systems.

Preheat:


This is more important for wave solder; a higher temperature preheat will reduce the thermal shock to SMD parts that are immersed (please consult individual product data sheets for SMD parts that are suited to wave solder). SMD parts should ideally be heated from the bottom-Side prior to wave. PTH (Pin through hole) parts on the topside should not be separately heated.


Wave:

250°C - 260°C recommended for optimum solderability.


Cool Down:

As with reflow solder, cool down should not be forced and 6°C/sec is recommended. Any air knives at the end of the 2nd wave should be heated.

IMPORTANT NOTE: Typical Pb-Free reflow solders have a more dull and grainy appearance compared to traditional SnPb. Elevating the reflow temperature will not change this, but extending the cool down can help improve the visual appearance of the joint.

MLC Chip Capacitors

APPLICATION NOTES

Storage

The components should be stored in their "as received packaging" where possible. If the components are removed from their original packaging then they should be stored in an airtight container (e.g. a heat sealed plastic bag) with desiccant (e.g. silica gel). Storage area temperature should be kept between +5 degrees C and +30 degrees C with humidity < 70% RH. Storage atmosphere must be free of gas containing sulfur and chlorine. Avoid exposing the product to saline moisture or to temperature changes that might result in the formation of condensation. To assure good solderability performance we recommend that the product be used within 6 months from our shipping date, but can be used for up to 12 months. Chip capacitors may crack if exposed to hydrogen (H2) gas while sealed or if coated with silicon, which generates hydrogen gas.

Solderability

Terminations to be well soldered after immersion in a 60/40 tin/lead solder bath at 245°C +/- 5°C for 5 +0/-0.5 seconds.

Leaching

Terminations will resist leaching for at least the immersion times and conditions shown below.

Termination Type	Solder Tin/	Solder	Immersion
	Lead/Silver	Temp °C	Time Seconds
Nickel Barrier	60/40/0	260 ± 5	30 ± 1

Lead-Free Wave Soldering

The recommended peak temperature for lead-free wave soldering is 250°C-260°C for 3-5 seconds. The other parameters of the profile remains the same as above.

The following should be noted by customers changing from lead based systems to the new lead free pastes.

- A. The visual standards used for evaluation of solder joints will need to be modified as lead free joints are not as bright as with tin-lead pastes and the fillet may not be as large.
- B. Lead-free solder pastes do not allow the same self alignment as lead containing systems. Standard mounting pads are acceptable, but machine set up may need to be modified.

General

Surface mounting chip multilaver ceramic capacitors are designed for soldering to printed circuit boards or other substrates. The construction of the components is such that they will withstand the time/temperature profiles used in both wave and reflow soldering methods.

Handling

Chip multilayer ceramic capacitors should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of tweezers or vacuum pick ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized. Taped and reeled components provides the ideal medium for direct presentation to the placement machine. Any mechanical shock should be minimized during handling chip multilayer ceramic capacitors.

Preheat

It is important to avoid the possibility of thermal shock during soldering and carefully controlled preheat is therefore required. The rate of preheat should not exceed 4°C/second and a target figure 2°C/second is recommended. Although an 80°C to 120°C temperature differential is preferred, recent developments allow a temperature differential between the component surface and the soldering temperature of 150°C (Maximum) for capacitors of 1210 size and below with a maximum thickness of 1.25mm. The user is cautioned that the risk of thermal shock increases as chip size or temperature differential increases.

Soldering

Mildly activated rosin fluxes are preferred. The minimum amount of solder to give a good joint should be used. Excessive solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. KYOCERA AVX terminations are suitable for all wave and reflow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

Natural cooling in air is preferred, as this minimizes stresses within the soldered joint. When forced air cooling is used, cooling rate should not exceed 4°C/second. Quenching is not recommended but if used, maximum temperature differentials should be observed according to the preheat conditions above.

Cleaning

Flux residues may be hygroscopic or acidic and must be removed. KYOCERA AVX MLC capacitors are acceptable for use with all of the solvents described in the specifications MIL-STD-202 and EIA-RS-198. Alcohol based solvents are acceptable and properly controlled water cleaning systems are also acceptable. Many other solvents have been proven successful, and most solvents that are acceptable to other components on circuit assemblies are equally acceptable for use with ceramic capacitors.

Prevention of Metallic Migration

Note that when components with Sn plating on the end terminations are to be used in applications that are likely to experience conditions of high humidity under bias voltage, we strongly recommend that the circuit boards be conformally coated to protect the Sn from moisture that might lead to migration and eventual current leakage.

When using Capacitor Arrays we recommend that there is no differential in applied voltage between adjacent elements.

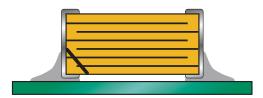
MLC Chip Capacitors

POST SOLDER HANDLING

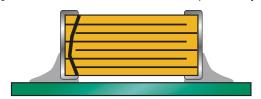
Once SMP components are soldered to the board, any bending or flexure of the PCB applies stresses to the soldered joints of the components. For leaded devices, the stresses are absorbed by the compliancy of the metal leads and generally don't result in problems unless the stress is large enough to fracture the soldered connection.

Ceramic capacitors are more susceptible to such stress because they don't have compliant leads and are brittle in nature. The most frequent failure mode is low DC resistance or short circuit. The second failure mode is significant loss of capacitance due to severing of contact between sets of the internal electrodes.

Cracks caused by mechanical flexure are very easily identified and generally take one of the following two general forms:


Mechanical cracks are often hidden underneath the termination and are difficult to see externally. However, if one end termination falls off during the removal process from PCB, this is one indication that the cause of failure was excessive mechanical stress due to board warping.

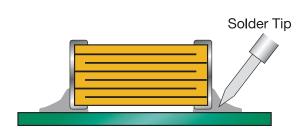
COMMON CAUSES OF MECHANICAL CRACKING


The most common source for mechanical stress is board depanelization equipment, such as manual breakapart, v-cutters and shear presses. Improperly aligned or dull cutters may cause torqueing of the PCB resulting in flex stresses being transmitted to components near the board edge. Another common source of flexural stress is contact during parametric testing when test points are probed. If the PCB is allowed to flex during the test cycle, nearby ceramic capacitors may be broken.

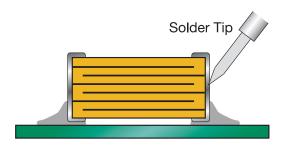
A third common source is board to board connections at vertical connectors where cables or other PCBs are connected to the PCB. If the board is not supported during the plug/unplug cycle, it may flex and cause damage to nearby components.

Special care should also be taken when handling large (>6" on a side) PCBs since they more easily flex or warp than smaller boards.

Type A: Angled crack between bottom of device to top of solder joint.

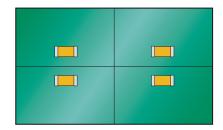


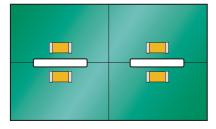
Type B: Fracture from top of device to bottom of device.


REWORKING OF MLCS

Thermal shock is common in MLCs that are manually attached or reworked with a soldering iron. KYOCERA AVX strongly recommends that any reworking of MLCs be done with hot air reflow rather than soldering irons. It is practically impossible to cause any thermal shock in ceramic capacitors when using hot air reflow.

However direct contact by the soldering iron tip often causes thermal cracks that may fail at a later date. If rework by soldering iron is absolutely necessary, it is recommended that the wattage of the iron be less than 30 watts and the tip temperature be <300°C. Rework should be performed by applying the solder iron tip to the pad and not directly contacting any part of the ceramic capacitor.


Preferred Method - No Direct Part Contact


Poor Method - Direct Contact with Part

PCB BOARD DESIGN

To avoid many of the handling problems, KYOCERA AVX recommends that MLCs be located at least .2" away from nearest edge of board. However when this is not possible, KYOCERA AVX recommends that the panel be routed along the cut line, adjacent to where the MLC is located.

No Stress Relief for MLCs

Routed Cut Line Relieves Stress on MLC

KYDCERa | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

FOLLOW US: O F in D

VISIT US AT WWW.KYOCERA-AVX.COM ▶

North America Tel: +1 864-967-2150

Europe Tel: +44 1276-697000

Asia Tel: +65 6286-7555

Central America Tel: +55 11-46881960

Japan Tel: +81 740-321250